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Abstract- This paper presents a technique for Antenna beam forming in high data rate OFDM-MIMO systems. 
The technique makes use of the Singular Value Decomposition (SVD) algorithm for matrix decomposition 
using Givens Rotation. In this paper a hardware oriented two-step diagonalization SVD scheme is derived 
from simple two-sided unitary transformations developed to ensure hardware and performance efficiency 
using CORDIC. Each unitary transformation step in the diagonalization procedure is identical in structure to 
permit pipelined systolic execution. The simulation results are obtained for fixed point models using SVD 
algorithm. An overall architecture is created in Matlab for 4X4 Complex valued matrices elements and then 
simulated. The VHDL code is then written to describe the architecture of the overall design and is the 
synthesized using Xilinx ISE 10.1 software for virtex-4 target device. 
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I.INTRODUCTION 
 

Orthogonal Frequency Division Multiplexing (OFDM) is a popular method for high-rate data transmission in 
wireless environments. In OFDM, the channel bandwidth is divided into several narrow sub bands. The frequency 
response over each of these sub bands is flat. Hence, a frequency-selective channel is transformed into several flat-
fading sub channels. The time domain waveforms of the subcarriers are orthogonal, yet the signal spectra 
corresponding to different subcarriers overlap in frequency. Therefore, the available bandwidth is used very 
efficiently. The data rate of the system is aggregate of the data rate per sub channel. These features make OFDM 
suitable for high data rate applications. Another advantage of OFDM systems is that they are less susceptible to 
various kinds of impulse noise. These characteristics result in reduced receiver complexity. MIMO (Multiple Input 
Multiple Output) systems use multiple antennas equalize the received signal to remove the effect of channel on the 
signal. Most of equalization detection algorithms need to invert a matrix which is either the channel state 
information (H) or a nonlinear function of it (f (H)). Increasing the number of transmitter and receiver antennas in 
the system, results in a higher data rate. At the same time, dimensions of matrix f (H) increase, requiring more 
computations to invert the matrix in less time. This makes the matrix inversion block a bottleneck in these systems. 
Matrix decomposition algorithms [1], such as the singular value decomposition (SVD) or the QR Decomposition 
(QRD), have applications in various signal processing fields. The SVD, for example, is used in array processing or 
data compression, but can also be applied to MIMO systems in order to increase the system performance by the use 
of beamforming and power allocation. The QRD, for example, is a key prerequisite for many advanced MIMO 
detectors, such as the sphere decoder [2]. Both these algorithm decomposition techniques are mainly base on a 
specific sequence of Givens rotations [1]. CORDIC (coordinate rotation digital computer) algorithms have shown to 
be a suitable tool to efficiently perform Givens rotations in hardware [3]. Due to the relatively high computational 
complexity of the SVD, systolic arrays based on the Jacobi method have been proposed [3]–[5]. However, in 
MIMO-OFDM systems [6] for example, multiple problems need to be solved concurrently, where the number of 
parallel tasks corresponds to the number of OFDM tones. The throughput of fast but large architectures (e.g., 
systolic arrays) is often difficult to match to an arbitrary number of problems, e.g., one systolic array might be 
insufficient in terms of throughput but two might exceed the available circuit area.  
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II.SVD ALGORITHM 
 

SINGULAR VALUE DECOMPOSITION 
 

Singular value decomposition (SVD) of a matrix  is given by M UΣV  Where and 
are unitary matrices and ∑  is a real nonnegative diagonal” matrix. Since   Σ  , we may 

assume m ≥ n without loss of generality. The singular values may be arranged in any order, for if P   and Q 
 are permutation matrices such that PΣQ remains “diagonal", then 

 M = ( ) (PΣQ) ( ) is also an SVD. It is customary to choose P and Q so that the singular values are 
arranged in non-increasing order: 
 σ1 ≥ ….. ≥ σr > 0, σr+1 = _ _ _ = 0, Where r = rank (M). 
If the matrices U, Σ and V are partitioned by columns as 
U = [u1, u2, _ _ _, um], Σ = diag [σ1, σ2, _ __, σn] and V = [v1, v2, _ _ _, vn], Then σi is the ith singular value of M, and 
ui and vi are the left and right singular vectors corresponding to σi. If M is real, then the unitary matrices U and V are 
real and hence orthogonal. 
The SVD procedure under consideration bases on the Golub-Kahan algorithm described in [7] and mainly performs 
the SVD in two phases: 
1) Bidiagonalization: First, a memory is initialized with M = {IM, A, IN} where IL stands for an L × L identity 
matrix. During the bidiagonalization phase, Givens rotations are successively applied to A from the left-hand side 
(LHS) and from the right-hand side (RHS), such that the M × N dimensional inner matrix A gets bidiagonal and 
real-valued (denoted by B0) as illustrated in Fig. All Givens rotations applied to A from the LHS and RHS are 
applied to the corresponding identity matrices. The resulting unitary matrices are denoted by  and  and the 
memory content after the bidiagonalization phase corresponds to M= {  , B0,  } where A = B0  . 
2) Diagonalization: The diagonalization phase consists of multiple diagonalization steps (indicated with k) and is 
illustrated in Fig. Givens rotations are subsequently applied from the LHS and from the RHS to the bidiagonal 
matrix Bk such that all off-diagonal entries 
 fi (for i = 1, 2, . . . , r − 1) of Bk become zero. The diagonalization phase is stopped whenever all fi are considered to 
be zero and all di (for i = 1, 2, . . . , r) correspond to the unordered singular values. In order to ensure convergence of 
the diagonalization phase and to reduce the overall computation time of the SVD, the first Givens rotation of each 
diagonalization step is performed with a modified input vector [x y]T , where y = t12 and x = t11 − µ uses the 
Wilkinson shift [7]. 

 

With and the trailing non-zero sub matrix of T corresponds to  

 
analogous to the bidiagonalization phase, all Givens rotations are also applied to the corresponding unitary matrices 
such that finally, M = {U, Σ, VH} is the SVD in (8). SVD algorithms require costly arithmetic operations such as 
division and square root in the computation of rotation parameters. Increased efficiency may be obtained through the 
use of hardware oriented arithmetic techniques that relate better to the algorithm in [8, 9, 10]. 
Bidiagonalization                                                  Diagonalization 

 
Fig.1. Bidiagonalization and Diagonalization phases’ Illustration for SVD for a complex valued 3 x 3 matrices [7]. 
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III.CORDIC ALGORITHM AND ARCHITECTURES FOR SVD COMPUTATION 
CORDIC Algorithms 
The Coordinate Rotation Digital Computer (CORDIC) algorithms allow fast iterative hardware calculation of sin, 
cos, arctan, sinh, cosh, arctanh, products, quotients, square roots, and conversion between binary and mixed radix 
number systems. Real-time signal processing concerns [8], combined with the performance and hardware advantage 
in the VLSI setting, makes CORDIC an attractive alternative to traditional arithmetic units for special-purpose 
hardware design. 
In a conventional sequential computer, the calculation of rotation angles through costly square root and division 
operations, or computation of sines/cosines in software, proves expensive. Also, matrix-vector products involve 
costly multiplication and division operations. In the context of special-purpose SVD 
architectures, primitive CORDIC operations like vector rotations and inverse tangent calculations help increase 
efficiency by more effectively mapping the algorithm to hardware [9, 10]. 
Special VLSI structures have been shown possible for the SVD [11, 12, 13]. For computing the SVD the circular 
mode of CORDIC is used. This method is very useful for fixed-point calculations. It is a combination of shifts and 
adds and does not require any multiplications [14],[15],[16],. In the figure 2 of parallel Fixed point CORDIC the 
three parallel data paths are provided for the x, y and z recurrence equations. The processor is composed of several 
registers to hold the final and temporary values of x, y and z. For a fixed-point implementation, shifters are used in 
the x and y data paths to produce multiplication by 2-j. A read-only memory (ROM) is used to store the angles for 
the three CORDIC modes viz., the circular (m = 1), the linear (m = 0) and the hyperbolic (m = -1) modes. Three 
fixed-point adders provide the additions required in the CORDIC recurrence relations. A control unit oversees the 
overall sequencing and angle selection depending on which of the six CORDIC operational modes is chosen. The 
control unit is responsible for choosing between transformation type based on the values in the y and z registers for 
the y reduction and z-reduction operation modes respectively. 
 

 
Fig.2.Fixed point CORDIC block diagram 

 

 
 

Fig.3. Fixed point SVD using CORDIC block diagram 
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Transformation types: 
For 0 
      2  
       2  
        
For 0 
      2  
       2  
        
 

IV.TWO SIDED UNITARY TRANSFORMATION 
 
Complex arithmetic and matrix transformations require a significantly greater number of computational steps than 
the corresponding real operations. A real Givens Rotation is given by 

0    ------------------- (1) 

Where  , c = cosθ, s = sinθ and √ . 
The Givens Rotation can be generalized to handle the case of complex arithmetic. A Complex Given Rotation can 
be can be described by two rotation angles as formulated in Coleman and Van Loan [17] as 

0      --------------------(2) 

The above rotation matrix is derived by first applying the simple unitary transformation 
0

0
   ----------------------- (3)  

to convert the complex numbers to real values. This is followed by a real Givens rotation (1) to zero out the second 
component. However, in order to avoid four complex rotations, the complex conjugate of (3) is applied to the left 
side of the real Givens rotation, giving the complex Givens rotation in (2).In the expanded form equation (2) can be 
written as 

0
0

0
0

 

The angle  and  can be determined from the input vectors as 
A =  ,   

B =  ,        --------------------(4) 

Then from the above angles and radii         ---------------- (5) 
The complex SVD can be approached by using the SVD-Jacobi algorithm [18]. As a basic step in the complex SVD-
Jacobi algorithm, a 2x2 matrix, possibly with complex data elements, is transformed into a real diagonal matrix. 
Several two-sided unitary transformations have been suggested in the literature [18] to diagonalize a complex 2_2 
matrix. Another scheme for the diagonalization of an arbitrary 2x 2 matrix is due to Kogbetliantz [19]. Deprettere 
and van der Veen [20] considered input matrices with a specialized structure f or a CORDIC SVD array based on 
the SVD-Jacobi method.  
The various methods proposed for the SVD of a complex 2x2 matrix mentioned have shortcomings. They are either, 
too cumbersome to implement in special-purpose VLSI using CORDIC or traditional arithmetic units. The scheme 
does not efficiently adapt to systolic computation. Two-sided rotations are used in the diagonalization of a real 2x2 
matrix in the Brent-Luk-Van Loan systolic array [21]. In the development of a systolic scheme to diagonalize a 
complex matrix, it is important to express these methods as two-sided unitary rotations/transformations. 
Two Q transformations are sufficient to compute the SVD. The first Q transformation essentially performs a QR 
decomposition of M. where  

    -------------------- (6) 

Also as we know that the QR decomposition of m x n matrix   is given by 0   ---------- (7) 
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Using the complex Givens rotation [17] the QR decomposition of a complex 2x2 matrix (6) can be computed. The 
second completes the diagonalization. To illustrate the steps in the diagonalization, each Q transformation is 
presented as a combination of sub transformations used. The first sub transformation 
is an R transformation which renders the bottom row of M real. It is followed by a real Givens rotation which zeros 
the lower left (2, 1) element. This completes the first Q transformation which is defined as 

0
       ------------ (8) 

Where , ,  0,  
Next, a D and I transformation are combined with a two-sided rotation to generate the Q transformation for the 
second step. The D transformation converts the main diagonal elements to real values and the I transformation takes 
advantage of the fact that the lower-left element is zero, to convert the upper-right 
element to a real value. After the D and I transformations are applied, the 2x2 matrix is real. Thus, the second Q 
transformation can be written as 

0
0

0 ---------------- (9) 

Unlike the first Q transformation, there are two possible sets of values for the unitary transformation angles. This is 
due to the fact that the left and right unitary angles in a D transformation are interchangeable. 
 The choice is between , ----------------(10)  

and , ,  , --------- (11) 

, , However, the rotation angles for the second Q transformation are given by  

 

 no matter which of(9) or(10) is chosen for the unitary angles. 
 

V.SYSTOLIC ARRAY 
 
One linear systolic array, the most efficient SVD algorithm is the Jacobi-like algorithm given by Brent and Luk [22]. 
The array implements a one-sided orthogonalization method due to Hestenes [23] and requires O (mnlog n) time and 
O (n) processors to compute the SVD of a real m x n matrix. It is capable of executing a sweep of the SVD-Jacobi 
method in O (n) time and is conjectured to require O (log n) sweeps for convergence. The proof of convergence for 
the Jacobi-SVD procedure with “parallel ordering" 
is due to Park and Luk [24]. The Brent-Luk-Van Loan systolic array is primarily intended to compute the SVD of a 
real n x n matrix, although the SVD of an m x n matrix can be computed in m + O(n log n) time.  
The SVD systolic array is an expandable, mesh connected array of processors, where each processor contains a 2x2 

sub matrix of the input matrix M ε Rnxn . Assumed n as even, this systolic array is a square array of n/2 x n/2 

processors. Before the computation processor Pij contains , ,
, ,

 where (i , j= 1,…….n/2). Each 

processor Pij is connected to its “diagonally” nearest neighbors ,     (1 < i , j < n/2). The SVD systolic array 
with 16 processors for n=8 is shown below. 
 

 
Fig.4.Matrix data elements and Rotation angles shown by SVD Systolic Array 
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The interconnections between the processors facilitate data exchange to implement the\ parallel ordering" of Brent Luk. The 
“parallel ordering" permits Jacobi rotations to be applied, in parallel, in groups of n=2. The angles for the n=2 Jacobi rotations are 
generated by the n=2 processors on the main diagonal of the array. The diagonal processors Pii (i = 1,.,.,., n/2) in the array have a 
more important role in the computation of the SVD when compared to the off-diagonal processors Pij (i ≠ j; 1 ≤ i; j≤ n/2). The 
application of a two-sided Jacobi rotation affects only the row and column of the diagonal processor generating the angles. In an 
idealized situation, the diagonal processors may broadcast the rotation angles, along the row and the column corresponding to 
their position in the array, in constant time. Each off-diagonal processor applies a two-sided rotation using the angles generated 
by the diagonal processors, in the same row and column with respect to its location in the array. 
A proposed architecture for SVD-CORDIC matrix decomposition which operates on 4x4 complex valued dimensional matrices is 
shown below. 

 
Fig.5. Architecture of SVD CORDIC 

 
The SVD-CORDIC Architecture consists of three main units i.e. MEMORY (REGISTERS), ARITHMETIC UNIT 
and INSTRUCTION BASED SEQUENCER CONTROL UNIT. The matrix memory (registers) provides storage 
for three complex valued 4 × 4 matrices M= {M1, M2, M3,} which is sufficient to store the result of an SVD. A 
complex value in M is stored at a single memory address, is 32 bits wide, and each real and imaginary part requires 
16 bits. The matrix memory consists of a two port 48×32 bit SRAM and requires 0.06mm2 in 0.18 µm CMOS 
technology. The matrix memory interface allows to read or write two different real or imaginary parts in at most two 
clock cycles. 
Givens rotations, square-roots, multiplications, and additions/subtractions are required to compute the SVD. Givens 
rotations and the square root can efficiently be computed by CORDIC, whereas multiplications and 
additions/subtractions are computed in a multiply-accumulate (MAC) unit. CORDICs can efficiently compute two 
dimensional rotations [9] by performing a series of micro rotations with the aid of shifts and additions/subtractions. 
To keep the circuit area low, a single CORDIC is used by the means of time sharing and has been designed to 
support vectoring and rotation. A complex-valued Givens rotation is performed by three real valued vectoring 
CORDICs. To compute the trailing sub matrix of T = Bk a real-valued multiply-accumulate (MAC) unit has been 
instantiated. The multiplier can be switched off in order to perform additions or subtractions if required so in the 
operation. This Instruction based sequencer consists of a 64×20 bit instruction RAM (of size 0.04mm2 in 0.18 µm 
CMOS technology) that provides storage for 64 instructions. The finite state machine (FSM) decodes instructions, 
generatates memory addresses, and provides control signals for the AU. 
 

VI.FPGA IMPLEMENTATION 
 
The Implementation was done on a complex –valued 4x4 SVD for 0.18 µm CMOS Technology. Table below shows 
the results. 

TABLE: Experimental results 
 

Parameters Total units Throughput/Area(
mm2) Clock frequency SVD Execution 

time(µs) 
Power 

Consumption 

Cordic 
microrotations 12 High/(0.43) 133MHz 12.50 170Mw 
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VII.CONCLUSIONS 
 

In this paper we described Design and implemented SVD matrix decomposition technique using Givens rotations. 
Low area was achieved using single CORDIC unit. The low-area MDUs have been shown to be suitable for MIMO 
OFDM systems, since they can be easily adapted to individual throughput requirements by the use of replication. A 
hardware oriented two-step diagonalization SVD scheme is derived from simple two-sided unitary transformations 
developed to ensure hardware and performance efficiency using CORDIC. In this paper we aimed for development 
of a systolic algorithm and, a hardware and performance efficient architecture implementable in VLSI, for 
computing the Singular Value Decomposition of an arbitrary complex matrix. 
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