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Abstract-The seismic response of linearly elastic, single-storey, two-way asymmetric building with linear and non-linear 
viscous dampers under bi-directional earthquake is investigated. The response is obtained by numerically solving the 
governing equations of motion. The effect of supplementary damping ratio on peak responses which include lateral, 
torsional and edge displacements and their accelerations are investigated. To study the effectiveness of dampers, the 
controlled response of asymmetric system is compared with the corresponding uncontrolled response. It is shown that the 
non-linear viscous dampers are quite effective in reducing the responses and the damper force depends on system 
asymmetry and supplemental damping. Furthermore, viscous damping may be used to reduce edge deformations in 
asymmetric-plan systems. 
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I. INTRODUCTION 

Under the earthquake loads, plane-asymmetric buildings with irregular distributions of mass or stiffness are likely to 
undergo torsional responses coupled with the translational vibrations. These types of structures are likely to suffer 
more severe displacement at the corner elements under bi-directional earthquake ground motions. This attracted 
attention of many researchers to investigate the seismic response of asymmetric buildings with supplemental energy 
dissipation devices to severe damages. In the past, several studies had been done to investigate the effectiveness of 
viscous damper in asymmetric structures under uni-directional earthquake. 

Goel (1998) studied the effects of supplemental viscous damping on seismic response of one-way asymmetric 
system and found that edge deformations in asymmetric systems can be reduced than those of the same edges in the 
corresponding symmetric systems. Wen-Hsiung Lin and Anil K. Chopra (2001) investigated understanding of how 
and why plan-wise distribution of fluid viscous dampers (FVDs) influences the response of linearly elastic, one-
story, asymmetric-plan systems. Asymmetric distributions of supplemental damping that are more effective in 
reducing the response compared to symmetric distribution. Snehal V Mevada and R.S. Jangid (2012) investigated 
effect of supplementary viscous damping on response of single-storey, one-way asymmetric system and found that 
response of building is depends on supplemental damping eccentricity ratio and eccentricity ratio. 

The synchronized action of two horizontal components of ground motion and structural plans unsymmetrical about 
both axes remained unsolved and required further investigations. The bi-directional seismic ground motion 
considered in this paper is more realistic than the single direction excitation. 

II. STRUCTURAL MODEL



The system considered is an idealized one-storey building which consists of a rigid floor supported on four columns 
as shown in Figure 1.1. Following assumptions are made for the structural system under consideration: (i) floor of 
super structure is considered as axially rigid and flexural rigid, (ii) columns are axially rigid, (iii) force-deformation 
relationship of superstructure is considered as linear and within elastic range, (iv) thickness of frame is neglected 
and (v) the structure is excited by bi-directional horizontal component of earthquake ground motion. 

Figure 1.1: Plan and isometric view of two-way asymmetric system. 

The mass of floor is assumed to be uniformly distributed and hence centre of mass (CM) coincides with the 
geometrical centre of the floor. The columns are arranged in a way such that it produces the stiffness asymmetry 
with respect to the CM in two directions and hence, the centre of rigidity (CR) is located at an eccentric distance, ex 
from CM in X-direction and ey from CM in Y-direction. The system is un-symmetric about both X-direction and Y-
direction; therefore system has three degrees of freedom (3-DOF) are namely lateral displacement in X-direction, ux 
Y-direction, uy and torsional displacement, u  as represented in Figure 1.1. Plan wise distribution of additional 
viscous damping is symmetric about both axes. Arrangement of dampers shown in Figure 1.1, damping constant of 
all dampers and distance from CM are equal, so that centre of damping (CD) coincides with centre of mass (CM).

Edge of building near the CR is considered as stiff edge and Edge of building far from the CR is considered as 
flexible edge. In Figure 1.1, stiff and flexible edges in X-direction and Y-direction are shown as Xs, Xf, Ys and Yf 
respectively.

III. SOLUTION OF EQUATIONS OF MOTION

Fluid Viscous
Damper



The governing equations of motion of the building model with coupled lateral and torsional degrees-of-freedom are 
obtained by assuming that the control forces provided by the dampers are adequate to keep the response of the 
structure in the elastic range. The equations of motion of the system in the matrix form are expressed as, 

Where M, C and K are mass, damping and stiffness matrices of the system, respectively; u = {ux uy u } T is the 
displacement vector;  is influence coefficient vector;  is ground acceleration vector;  is 
ground acceleration in X-direction;  is ground acceleration in Y-direction. 

 F = × Fd = {Fdx Fdy Fd } T is the vector of resultant control forces.  is the matrix that defines the location of 
control devices; Fd = {Fd1 Fd2 Fd3 Fd4} T is the vector of control forces of dampers. Fdx, Fdy and Fd  are resultant 
control forces of dampers along X-, Y- and - direction, respectively.  

The mass matrix can be expressed as, 

 Where m represents the lumped mass of the floor; and  is mass moment of inertia of floor 

about vertical axis (Z-axis) at CM; where ‘B  and ‘D’ are the plan dimensions of the building. 

The stiffness matrix given by A.K. [4] can be expressed as, 

 Where, Kxx & Kyy denotes the total lateral stiffness of the system in X-direction & Y-direction respectively; Kxy 
= Kyx = 0 denotes that ux and uy are uncoupled degrees of freedom. 

;  ; 

 K is torsional stiffness of system about vertical axis (Z-axis) at CM; Kxi and Kyi indicates the lateral stiffness of 
ith column in X-direction and Y-direction respectively; xi is the x-coordinate distance of ith column with respect to 
CM and yi is the y-coordinate distance of ith element with respect to CM. 

 Cdx and Cdy are the total damping coefficient of damper system along x-axis and y-axis respectively. For the 
system considered Cdx = C1 + C3 and Cdy = C2 + C4; the value of Cdx and Cdy are calculated as, 

; 

 Where, d is the supplemental damping ratio; x and y are natural frequencies of system in uncoupled modes. 

 The natural damping matrix of the system [4] constructed from the Rayleigh’s damping considering mass and 
stiffness proportional as,  



 Where a0 and a1 are the coefficients depends on damping ratio of two vibration modes. In system natural 
damping is 5% of critical damping is considered.  

IV. STATE-SPACE REPRESENTATION

 To facilitate Time-History analysis by numerical time stepping method above equations of motion of structure 
representation in state-space form as below [5], 

Where, 

In size of matrix and vectors “n” is numbers of degree of freedom(s). 

Where, 

In which, e t is state translation matrix of size (2n × 2n) equal to A matrix

V. MODELING OF FLUID VISCOUS DAMPER 

Viscous fluid damper operates on the principle of fluid flow through orifices. A typical viscous damper consists of a 
cylindrical body and central piston which strokes through a fluid filled chamber. The commonly used fluid is 
silicone based fluid which ensures proper performance and stability. Force offered by damper always resists the 
motion of structure. This force is proportional to the relative velocity between the end nodes of damper. In case of 
purely viscous behavior, material does not return any of the energy stored during loading. All the energy is lost as 
“pure damping” once the load is removed. Figure 5.1 shows the Mathematical model of fluid viscous damper. 

Figure 5.1: Mathematical model of fluid viscous damper. 

The force in a viscous damper given by, 



) 

where, Cdi is damper coefficient of the ith damper, udi is relative velocity between the two ends of a damper which is 
to be considered corresponding to the position of dampers,  is the damper exponent ranging from 0.5 to 1 for 
seismic applications and (sgn) is signum function. When  = 1, a damper is called as linear viscous damper (LVD) 
and with the value of  smaller than unity, a damper will behave as nonlinear viscous damper (NLVD). Dampers 
with  larger than unity have not been seen often in seismic practical applications. 

VI. NUMERICAL STUDY

The seismic response of linearly elastic, single storey, two-way asymmetric building installed with fluid viscous 
dampers under two horizontal component of ground motion is investigated. The response quantities are lateral and 
torsional displacements of floor mass obtained at the CM (ux, uy and u ), displacements at stiff and flexible edges of 
building (uys and uyf); lateral and torsional accelerations of floor mass obtained at the CM, accelerations at stiff and 
flexible edges of building. The response of the system is investigated under parametric variations of additional 
damping ( d) and non-linearity exponent of velocity of damper. 

The peak responses are obtained by performing time history analysis under four considered earthquake ground 
motions namely, Imperial Valley (1940), Loma Prieta (1989), Northridge (1994) and Kobe (1995). The details of 
earthquakes such as peak ground acceleration (PGA), duration and recording station are summarized in Table 6.1. 
The average values of peak responses from four earthquakes are obtained and study is carried out based on these 
average responses. 

Table 6.1 Details of earthquake motions considered for the numerical study 

Earthquake Recording Station 
Duration 

(sec) 
PGA (g) 

EQx EQy 

Imperial Valley, 19th May, 1940 El Centro 40 0.31 0.22 

Loma Prieta, 18th October,1989 Los Gatos Presentation Center 25 0.97 0.59 

Northridge, 17th January, 1994 Sylmar Converter Station 40 0.89 0.61 

Kobe, 16th January,1995 Japan Meteorological Agency 48 0.82 0.60 

 In order to study the effectiveness of control system the responses are expressed in terms of indices Re. The 
value of Re less than unity indicates that the control system is effective in reducing the responses. Re is defined as, 

Physical quantities of system for analysis are taken as follow; plan dimension of 6m×6m and storey height of 4m. 
Out of four columns 3-columns are of dimension 0.3m×0.3m and one of dimension 0.37m×0.37m is taken, so two-
way asymmetry is achieved. Total effective floor load is 8.25 KN/m2 taken, so that the lumped mass (m) of system 
is 30275.25 Kg. 

Consecutively to study the effects of supplemental damping ratio, d for LVDs and NLVDs, the variations of Re 
against d = 0 to 0.8 (0 to 80%) are shown in Figures 3 and 4. The value of Re = 1 corresponding to d = 0 is 
representing the uncontrolled response. The responses are plotted for three types of non-linear and linear dampers 
having velocity exponent ( ) is equal to 0.5, 0.75 and 1.  

It can be observed from Figure 6.1, Re for displacements ux, uy and u  x- direction, y- direction and -direction 
decreases with increasing d. The value of Re for displacements ux, uy and u  with NLVD is lesser than value of Re 
for LVD, shows that non linear dampers are more effective than linear dampers. Re for accelerations Ax, Ay and A  
in x- direction, y- direction and -direction decreases with increasing d. The value of Re for accelerations Ax and Ay 
with LVD and NLVD having velocity exponent (  = 0.75) are decreases as increasing in d. It is also observed that 
angular acceleration (A ) of system with NLVD having velocity exponent (  = 0.5), value of Re for A  is decreases 



with increasing d up to, d = 0.3 (30%) and beyond that it increases extremely, for d > 0.3  NLVD having   0.5 
are not effective for reducing angular accelerations. 

Displacements of stiff edges and flexible edges in X-direction and Y-direction are uxs, uxf, uys and uyf respectively. 
Accelerations of stiff edges and flexible edges in X-direction and Y-direction are Axs, Axf, Ays and Ayf respectively. 
It can be observed from Figure 6.2, Re for all response quantities (displacement and acceleration) at the stiff edges 
and flexible edges in x-direction and y-direction decreases with increasing additional damping ( d).  

It is observed from Figure 6.1 and Figure 6.2 that all response quantities excluding the peak angular acceleration 
with an increase in d. The decrease in these response quantities is rapid in the beginning and it becomes gradual for 
values of d  0.3 (30%). Hence, d = 0.3 (30%) is considered to be an optimal parameter for the fluid viscous 
damper for all four earthquakes.  
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Figure 6.1: Effect of d and  on Re for various displacements and accelerations at CM. 



0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
0.4

0.6

0.8

1.0

R
e 

fo
r '

u xf
'

R
e 

fo
r '

A
xf
'

R
e 

fo
r '

u xs
'

R
e 

fo
r '

A
xs

'

R
e 

fo
r '

u yf
'

R
e 

fo
r '

A
yf
'

R
e 

fo
r '

u ys
'

 Additional Damping  Additional Damping

R
e 

fo
r '

A
ys

'

Figure 6.2: Effect of d and  on Re for various displacements and accelerations at stiff edges and flexible edges. 



Figure 6.3 and Figure 6.4 shows the time histories of various displacements and accelerations responses of 
uncontrolled system compared with corresponding system controlled with LVDs (  = 1) and NLVDs (  = 0.5) with 
additional damping ratio 30% ( d = 0.3), which is considered as optimal amount of additional damping.  
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Figure 6.3: Time-History for uncontrolled and controlled stiff edge & flexible edge displacements (m) under Imperial Valley earthquake 
(considered optimal). 
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Figure 6.4: Time-History for uncontrolled and controlled stiff edge & flexible edge accelerations (m/sec2) under Imperial Valley earthquake 
(considered optimal). 

It is observed from Figure 6.3 & Figure 6.4, NLVDs are more effective in reducing the edge displacements than 
LVDs. For edge accelerations, response reduction by NLVDs and LVDs are comparatively less effective than 
displacements.  



VII. CONCLUSION

The seismic response of linearly elastic, single-storey, two-way asymmetric building with linear and non-linear 
viscous dampers under bi-directional earthquake is investigated. The response is evaluated with parametric 
variations to study the comparative performance of LVDs and NLVDs for asymmetric system. There are two 
parameters considered in investigation are additional damping ratio ( d) and velocity exponent of dampers ( ). From 
the patterns of the results of the current study, the following conclusions can be made for the system considered:   

1) All response quantities excluding the peak angular acceleration with an increase in d. The decrease in these
response quantities is rapid in the beginning and it becomes gradual for values of d  0.3 (30%). Hence,
additional damping 30% of critical damping is considered to be an optimal parameter for the fluid viscous
damper for all four earthquakes.

2) Angular acceleration is decreases with increasing additional damping up to 30% and beyond that it increases
extremely, for additional damping more than 30% NLVDs having exponent of velocity (   0.5) are not
effective for reducing angular accelerations.

3) NLVDs are more effective in reducing the edge displacements than LVDs. For edge accelerations, response
reduction by NLVDs and LVDs are comparatively less effective than displacements.
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