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Abstract - Image denoising is a common procedure in digital image processing aiming at the removal of noise which may 
corrupt an image during its acquisition or transmission while sustaining its quality. This paper presents a review of some
significant work in the area of image denoising. After a brief introduction, some popular approaches are classified into 
different groups and an overview of various algorithms and analysis is provided. 

I. INTRODUCTION 

An image is corrupted by noise in its acquisition and transmission. The goal of image denoising is to produce good 
quality of the original image from noisy image. Wavelet denoising techniques remove the noise present in the signal 
while preserving the signal characteristics, regardless of its frequency content. Image denoising still remains a 
challenge for researchers because noise removal introduces artifacts and causes blurring of the images. This paper 
describes different methods for noise reduction giving an insight as to which algorithm should be used to find the 
most reliable estimate of the original image data.  

II. CLASSIFICATION OF DENOISING TECHNIQUES 

There are two basic approaches to image denoising, spatial filtering methods and transform domain filtering 
methods. Spatial filters employ a low pass filtering on groups of pixels with the assumption that the noise occupies 
the higher region of frequency spectrum. Spatial Low-pass filters will not only smooth away noise but also blur 
edges in signals and images while the high-pass filters can make edges even sharper and improve the spatial 
resolution but will also amplify the noisy background [2].  
Fourier transform domain filters used in signal and image processing involve a trade-off between the signal-to-noise 
ratio (SNR) and the spatial resolution of the signal/image processed. The conventional Fast Fourier Transform (FFT) 
based image denoising method is essentially a low pass filtering technique  in which edge is not as sharp in the 
reconstruction as it was in  the original. The edge information is spread across frequencies because of the FFT basis 
functions, which are not being localized in time or space. Hence low pass-filtering results in the smearing of the 
edges. But, the localized nature of the wavelet transforms both in time and space results in denoising with edge 
preservation.  

Wavelet Analysis, a new form of signal analysis is far more efficient than Fourier analysis wherever a signal is 
dominated by transient behavior or discontinuities. Several investigations have been made into additive noise 
suppression in signals and images using wavelet transforms. Much of the early work on wavelet noise removal 
based on thresholding the Discrete Wavelet Transform (DWT) coefficients of an image and then reconstructing it, 
was done by Donoho and Johnstone [3]. It has been found that wavelet based denoising is effective in that although 
noise is suppressed, edge features are retained without much damage [4]. 



2.1 Spatial Filtering - A traditional way to remove noise from image data is to employ spatial filters. Spatial filters 
can be further classified into non-linear and linear filters.

I.Non-Linear Filters - With non-linear filters, the noise is removed without any attempts to explicitly identify it. 
Spatial filters employ a low pass filtering on groups of pixels with the assumption that the noise occupies the higher 
region of frequency spectrum. Generally spatial filters remove noise to a reasonable extent but at the cost of blurring 
images which in turn makes the edges in pictures invisible. In this case, the value of an output pixel is determined by 
the median of the neighbourhood pixels, rather than the mean. 

Advantage of median filter - Median is much less sensitive than the mean to extreme values (called outliers); 
therefore, median filtering is able to remove these outliers without reducing the sharpness of the image.  In recent 
years, a variety of nonlinear median type filters such as weighted median [2], rank conditioned rank selection [3], 
and relaxed median [4] have been developed. 

II. Linear Filters - A mean filter is the optimal linear filter for Gaussian noise in the sense of mean square error. 
Linear filters too tend to blur sharp edges, destroy lines and other fine image details, and perform poorly in the 
presence of signal-dependent noise. The wiener filtering [5] method requires the information about the spectra of the 
noise and the original signal and it works well only if the underlying signal is smooth. Wiener method implements 
spatial smoothing and its model complexity control correspond to choosing the window size. To overcome the 
weakness of the Wiener filtering, Donoho and Johnstone proposed the wavelet based denoising scheme in [6, 7]. 

FIGURE 1 – CLASSIFICATION OF IMAGE DENOISING METHODS 



2.2 Transform Domain Filtering - The transform domain filtering methods can be subdivided according to the choice 
of the basis functions. The basis functions can be further classified as data adaptive and non-adaptive. Non-adaptive 
transforms are discussed first since they are more popular. In this paper the discussion of adaptive and non-adaptive 
thresholding is discussed as these are the popular methods used now a days. 

2.2.1 Spatial-Frequency Filtering - Spatial-frequency filtering refers use of low pass filters using Fast Fourier 
Transform (FFT). In frequency smoothing methods [5] the removal of the noise is achieved by designing a 
frequency domain filter and adapting a cut-off frequency when the noise components are decorrelated from the 
useful signal in the frequency domain. These methods are time consuming and depend on the cut-off frequency and
the filter function behavior. Furthermore, they may produce artificial frequencies in the processed image. 

2.2.2 Wavelet domain - Filtering operations in the wavelet domain can be subdivided into linear and nonlinear 
methods.
I. Linear Filters - Linear filters such as Wiener filter in the wavelet domain yield optimal results when the signal 
corruption can be modeled as a Gaussian process and the accuracy criterion is the mean square error (MSE) [8, 9]. 
However, designing a filter based on this assumption frequently results in a filtered image that is more visually 
displeasing than the original noisy signal, even though the filtering operation successfully reduces the MSE. In [10] 
a wavelet-domain spatiallyadaptive FIR Wiener filtering for image denoising is proposed where wiener filtering is 
performed only within each scale and intrascale filtering is not allowed. 

II. Non-Linear Threshold Filtering - The most investigated domain in denoising using Wavelet Transform is the 
non-linear coefficient thresholding based methods. The procedure exploits sparsity property of the wavelet 
transform and the fact that the Wavelet Transform maps white noise in the signal domain to white noise in the 
transform domain. Thus, while signal energy becomes more concentrated into fewer coefficients in the transform 
domain, noise energy does not. It is this important principle that enables the separation of signal from noise. The 
procedure in which small coefficients are removed while others are left untouched is called Hard Thresholding [1]. 
But the method generates spurious blips, better known as artifacts, in the images as a result of unsuccessful attempts 
of removing moderately large noise coefficients. To overcome the demerits of hard thresholding, wavelet transform 
using soft thresholding was also introduced in [1]. In this scheme, coefficients above the threshold are shrunk by the 
absolute value of the threshold itself. Similar to soft thresholding, other techniques of applying thresholds are semi-
soft thresholding. 

a. Non-Adaptive thresholds - VISUShrink [6] is non-adaptive universal threshold, which depends only on number of 
data points. It has asymptotic equivalence suggesting best performance in terms of MSE when the number of pixels 
reaches infinity. VISUShrink is known to yield overly smoothed images because its threshold choice can be
unwarrantedly large due to its dependence on the number of pixels in the image. 

b. Adaptive Thresholds - SUREShrink [6] uses a hybrid of the universal threshold and the SURE [Stein’s Unbiased 
Risk Estimator] threshold and performs better than VISUShrink. BayesShrink [11, 12] minimizes the Bayes’ Risk 
Estimator function assuming Generalized Gaussian prior and thus yielding data adaptive threshold. BayesShrink 
outperforms SUREShrink most of the times. Cross Validation [13] replaces wavelet coefficient with the weighted 
average of neighborhood coefficients to minimize generalized cross validation (GCV) function providing optimum 
threshold for every coefficient. 

III. Non-orthogonal Wavelet Transforms - Undecimated Wavelet Transform (UDWT) has also been used for 
decomposing the signal to provide visually better solution. Since UDWT is shift invariant it avoids visual artifacts 
such as pseudo-Gibbs phenomenon. Though the improvement in results is much higher, use of UDWT adds a large 
overhead of computations thus making it less feasible. In [14] normal hard/soft thresholding was extended to Shift
Invariant Discrete Wavelet Transform. In [15] Shift Invariant Wavelet Packet Decomposition (SIWPD) is exploited 
to obtain number of basis functions.
IV. Wavelet Coefficient Model - This approach focuses on exploiting the multiresolution properties of Wavelet 
Transform. This technique identifies close correlation of signal at different resolutions by observing the signal 



across multiple resolutions. This method produces excellent output but is computationally much more complex and 
expensive. The modeling of the wavelet coefficients can either be deterministic or statistical. 

a. Deterministic - The Deterministic method of modeling involves creating tree structure of wavelet coefficients 
with every level in the tree representing each scale of transformation and nodes representing the wavelet
coefficients. This approach is adopted in [16]. The optimal tree approximation displays a hierarchical interpretation 
of wavelet decomposition. Wavelet coefficients of singularities have large wavelet coefficients that persist along the 
branches of tree. Thus if a wavelet coefficient has strong presence at particular node then in case of it being signal, 
its presence should be more pronounced at its parent nodes. 

b. Statistical Modeling of Wavelet Coefficients - This approach focuses on some more interesting and appealing
properties of the Wavelet Transform such as multiscale correlation between the wavelet coefficients, local 
correlation between neighborhood coefficients etc. This approach has an inherent goal of perfecting the exact 
modeling of image data with use of Wavelet Transform. A good review of statistical properties of wavelet 
coefficients can be found in [17] and [18]. The following two techniques exploit the statistical properties of the 
wavelet coefficients based on a probabilistic model. 

I. Marginal Probabilistic Model - In [19], authors proposed a methodology in which the wavelet coefficients are
assumed to be conditionally independent zero-mean Gaussian random variables, with variances modeled as
identically distributed, highly correlated random variables. An approximate Maximum A Posteriori (MAP) 
Probability rule is used to estimate marginal prior distribution of wavelet coefficient variances. All these methods 
mentioned above require a noise estimate, which may be difficult to obtain in practical applications. Simoncelli and 
Adelson [19] used a twoparameter generalized Laplacian distribution for the wavelet coefficients of the image, 
which is estimated from the noisy observations. Chang et al. [20] proposed the use of adaptive wavelet thresholding 
for image denoising, by modeling the wavelet coefficients as a generalized Gaussian random variable, whose
parameters are estimated locally (i.e., within a given neighborhood). 

II. Joint Probabilistic Model - The correlation between coefficients at same scale but residing in a close 
neighborhood are modeled by Hidden Markov Chain Model where as the correlation between coefficients across the 
chain is modeled by Hidden Markov Trees. Once the correlation is captured by HMM, Expectation Maximization is 
used to estimate the required parameters and from those, denoised signal is estimated from noisy observation using 
wellknown MAP estimator. A model in which each neighborhood of wavelet coefficients is described as a Gaussian 
scale mixture (GSM) which is a product of a Gaussian random vector, and an independent hidden random scalar 
multiplier. 

2.2.3 Data-Adaptive Transforms - Recently a new method called Independent Component Analysis (ICA) has 
gained wide spread attention. The ICA method was successfully implemented in [21, 22] in denoising Non-Gaussian
data. Drawbacks of ICA based methods as compared to wavelet based methods are the computational cost because it 
uses a sliding window and it requires sample of noise free data or at least two image frames of the same scene. In 
some applications, it might be difficult to obtain the noise free training data.

III. CONCLUSION 

Performance of denoising algorithms is measured using quantitative performance measures such as peak signal-to-
noise ratio (PSNR), signal-to-noise ratio (SNR) as well as in terms of visual quality of the images. Many of the 
current techniques assume the noise model to be Gaussian. In reality, this assumption may not always hold true due 
to the varied nature and sources of noise. An ideal denoising procedure requires a priori knowledge of the noise, 
whereas a practical procedure may not have the required information about the variance of the noise or the noise 
model. Thus, most of the algorithms assume known variance of the noise and the noise model to compare the 
performance with different algorithms. 
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