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Abstract-The objective of the sparse FIR filter design problem considered in this paper is to reduce the number of 
nonzero valued coefficients. The proposed design method is subject to the iterative shrinkage/thresh holding(IST) 
algorithms, which are used in sparse and redundant representation for signals. To reduce the number of nonzero valued 
filter coefficient, subject to a least square (weighted) approximation error constraints imposed on frequency domain. The 
design algorithm is to transfer the original non-convex problems to a series of constrained sub-problems in a simpler 
form, despite of their non-convexity, solved by a numerical approach developed by in this paper. 

Index Term: IST, WLS, Sparse filter, FIR filter and digital filters  

I. INTRODUCTION 
Sparseness in this filter design means a filter with the majority of the coefficients being zero.  In this paper, we 
concern sparse FIR filter designs, which aim to find FIR filters with as few nonzero-valued coefficients as possible. 
If a sparse FIR filter is attained, the multipliers corresponding to the zero-valued coefficients can be omitted, which 
consequently reduce the implementation complexity. Theoretically speaking, we can locate optimal positions of 
zero-valued impulse responses by exhaustive search. However, this is impossible due to its huge computational 
complexity when the filter order is large. In practice, it is more realistic to find locally optimal designs. The major 
difficulty of local search is to determine which filter coefficients could impact the performance of an FIR filter less 
than some others. In [12], orthogonal matching pursuit (OMP) algorithm is employed to determine sparse solutions 
to equiripple filter design problems, which are recast as a linear system of equations. This algorithm is belonged to 
greedy methods. Compared with exhaustive search, the computational complexity of the OMP design algorithm is 
dramatically reduced. In [13], the branch-and-bound algorithm is applied to the design of sparse FIR filters. 
Following the depth-first search, filter coefficients to be zeros are gradually incorporated in sub-problems until the 
given specifications are violated. A half-band FIR filter design algorithm is presented in [14], where by introducing 
auxiliary variables the sparse design problem is formulated as a mixed integer linear programming (MILP) problem 
and then solved by branch-and-bound or branch-and-cut technique. Although the design algorithms in [13] and [14] 
employ intelligent search to locate optimal solutions, the computational complexity is still high especially when 
designing FIR filters with high orders. Using linear programming (LP) as building blocks, two heuristic approaches 
are proposed in [15] to design sparse FIR filters. The first approach iteratively thins nonzero-valued coefficients. In 
each iterative step, one or more coefficients are forced to zeros using either the minimum-increase or smallest-
coefficient rule. The second approach is to determine the sparsest filter by solving an approximate problem with an -
norm objective function. Based on the similar idea of the second approach in [15], a two-phase design algorithm is 
proposed in [16]. A convex design problem with an -norm regularization term is first solved. Then, the hard thresh 
holding operation is applied to force coefficients with small magnitudes equal to 0. Finally, a post-processing is 
employed to further refine the design result. Similar design strategy is also applied in sparse IIR filter design. 
Many of design approaches described above only consider linear-phase FIR filter designs subject to peak error 
constraints imposed on magnitude response. However, some of them can be readily extended to handle general FIR 
filter designs. In this paper, we present an iterative shrinkage/thresh holding (IST)-based algorithm for sparse FIR 
filters designs subject to a WLS approximation error constraint. Both linear- and nonlinear-phase FIR filter designs 
are handled under a unified framework. The basic idea behind the proposed design algorithm is to successively 
transform the original non convex design problem to a series of sub-problems in a simpler form. Although these sub-
problems are still non-convex, they can be efficiently solved by a numerical approach developed in this paper. 
Furthermore, by means of the Lagrange dual problems of such sub-problems, it will be demonstrated in Section C 
that the obtained solutions are optimal to their respective sub-problems.  



 

 
The paper is organized as follows. The sparse FIR filter design problem is first presented in Section B. A novel 
iterative design method is then proposed in Section C. Several design examples are presented in. Finally, 
conclusions are drawn in Section D. 

II. PROBLEM FORMULATION 

Let Hd be a given desirable frequency response and I shows all frequencies. A dense grid of frequency points  

 are sampled over I. The original WLS design problem can be expressed by 

                                                                              (1) 
The filter coefficient vector is defined by  

                                                                                             (2) 

And  is a given weighting function. In (2), the superscript represents the transpose operation of a matrix 
or vector. In this paper, we only consider design problems of FIR filters with real-valued coefficients. However, the 
proposed algorithm can be readily extended to handle design problems of FIR filters with complex-valued 

coefficients Using h, the frequency response of an FIR filter can be computed by 

                                                                                                  (3) 
Where 

                                                                                 (4) 
It is known that design problem (1) is convex and can be equivalently cast as 

                                                                                                       (5) 
Were 

(6)

                                                                                                      (7) 

and  denotes the Euclidean norm of a vector . In (6) and (7), e{.}and Im{.}are operators used to 

retrieve real and imaginary parts of a complex value, respectively. The optimal solution of (5) can be obtained 
by solving a set of linear equations or using some convex optimization solver [9] or [10] if additional convex 

constraints are incorporated. For convenience of latter discussion, we designate  as the optimal objective value 
of the WLS design problem (5).  



 

Based on (5), the sparse FIR filter design problem under consideration is expressed by 
 

                                                                                                             (8a) 
 

                                                                                                    (8b) 
 

Where  denotes the  norm of x, which is equal to the number of nonzero-valued elements of x. It should be 
mentioned here that the norm is essentially a semi-norm as it does not satisfy the property of positive scalability. In 

(8),  is a specified upper bound of the WLS approximation error. Without loss of generalization, we assume that 
 

                                 (9) 

We can achieve a sparser design by a larger , while a lower WLS approximation error by a smaller . The 
design problem (8) is highly non-convex and, in general, it is difficult to definitely obtain its optimal solutions. Note 
that if we appropriately choose F, h and d (8) can also be applied to formulate sparse linear-phase FIR filter design 
problems. For instance, in order to design an Nth-order Class I linear-phase FIR filter, F and h can be chosen, 
respectively, as 
 

 
 

 
Correspondingly, d is composed by the desired magnitude responses sampled on the frequencies 

 , . For linear-phase FIR filter designs, the WLS approximation error constraint (8b) only needs 
to be imposed on the magnitude response instead of the frequency response, as the group delay of a linear-phase FIR 
filter is constant over the whole frequency band. 

The non-convexity of (8) can be overcome by replacing the  norm of h by its  norm in the objective function. 

Although it is a good approximation of (8), the norm design problem does not directly lead to a real sparse 
solution. In the next section, we shall introduce an efficient design algorithm to solve (8), which can yield sparse 
filters directly. 

III. ITERATIVE DESIGN METHOD  

One promising way to efficiently solve (8) is to mix its  norm objective function and the  norm constraint in the 
form 
 

                                                                                            (10) 
 

where the positive regularization parameter   controls the tradeoff between the approximation error and the sparsity 
of filter coefficients. Many numerical approaches have been proposed to tackle this unconstrained optimization 
problem. Among them, the IST algorithms have drawn much attention due to their computational efficiency. The 
IST algorithms were proposed independently by several authors. The major advantage of the IST algorithms is that 
in each iterative step of the IST algorithms the optimization can be decomposed into a set of independent scalar 
optimization problems, which generally have closed-form solutions, such that large-scale problems can be 



 

efficiently resolved. Readers are referred to [7] and [8] for a more thorough review of the IST algorithms and their 
variants. The proposed algorithm is based on a design strategy similar to that of the IST algorithms. However, 

instead of minimizing the regularized objective function , the proposed algorithm directly deals with (8) so as 

to avoid the dilemma of choosing the regularization parameter . The proposed algorithm contains an iterative 
design procedure, which is developed in Section C. In each iteration, a sub-problem is constructed using the solution 
obtained in the previous iterative step. It will be shown that although this sub-problem is still non-convex, its 
globally optimal solution can be efficiently  obtained in each iterative step by a numerical method presented in 
Section-C. 

IV. ITERATIVE DESIGN PROCEDURE  

The proposed design algorithm adopts an iterative procedure to design sparse FIR filters. The initial point  can 

be obtained by solving the original WLS design problem (5). In the  -th iterative step, we construct a 
constrained sub-problem other than the regularized one. Its objective function is in the same form as in (8). 
Constraint (8b) is modified as 

                                                                                           (11) 
 

Where  the design result is in the last iterative step and the additional term  is defined by 
 

 
 

                                                                                       (12) 

In (12), is chosen such that  is always convex, which further implies 

                                                                                                        (13) 

Where  represents the maximal eigenvalue of a symmetric matrix. It should be mentioned that under (13) 

the term  is always nonnegative. Thus, the feasibility domain defined by (11) is contained within the one 

defined by (8b). In order to make the restricted feasibility domain as large as possible, should be chosen as 

 . 
After some manipulations, constraint (11) can be rewritten by 
 

                                                                                                (14) 
 
Where 

                                                                                  (15) 
 

 

                                                                                                     (16) 
In (16), represents an identity matrix whose size can be determined in context. Using (11) or, equivalently, (14), we 
can reformulate the sub-problem in each iterative step as 

                                                                                                (17) 
 

s.t.                                                                                              (17b) 



 

Note that (17) cannot be further decomposed to a set of scalar optimization problems. We shall  
introduce an efficient design method in the next subsection to solve (17). 

 Let  denote an optimal solution to (17). The following proposition shows that by appropriately selecting an 
initial point for the iterative design procedure, the feasibility domain of (17) is nonempty. Then, if in each iteration a 
global solution to (17) can be always achieved, we can find a local solution of the original design problem (8). 
 
Proposition 1: If 

                                                                                                           (18) 
 

the feasibility domain defined by (14) is nonempty for any .  

Proof: First of all, we show that for some specific , if  is satisfied, is nonnegative.  
Since 

                                                                                             (19) 
And 

 
 
We have  

 
 
And consequently 

 
If  , there exists at least one feasible point (e.g. , ) for the design problem (17). Combined with the fact 

that the optimal solution of (17) also satisfies (19), in all the successive iterative steps, the feasibility domain 

defined by (14) is always nonempty. If the iterative procedure starts from a given which satisfies (18), then the 

feasibility domain defined by (14) is nonempty for any   . 
In our designs, the iterative design procedure continues until the following condition is satisfied 

                                                                                                      (20) 
or the number of iterations is larger than a predefined number MaxIter. Although the convergence of the proposed 
design algorithm has not been strictly guaranteed, in all the designs we have conducted, the iterative procedure can 
always converge to final solutions. 
After the iterative procedure described above, we may further reduce the WLS approximation error by solving a 
WLS design problem similar to (5) 

                                                                                                         (21a) 

.                                                                                                (21b) 
In (21b), 

 is a subset of indices at which  is identified to be zero by the iterative procedure described before. The nonzero 

valued coefficients of the optimal solution to (21) can be computed by 

                                                                                                (22) 

where  is obtained by extracting from  the columns corresponding to the complement set of 



 

 Note that if 

 is an empty set, (22) is also the optimal solution to (5). 
TABLE I 

SPECIFICATIONS OF DESIGN 
Passband region 
Stopband region 
Filter order N 90 
Parameter  

of a linear-phase FIR filter is constant over the whole frequency band, we only measure the (weighted) and  
errors on magnitude response of linear-phase FIR filters. All designs presented in this section are conducted on a 
desktop computer with an AMD   Ph II quad core processor of 3.00 GHz. 
 
Example 1 
 
The first example is taken from [4], where the objective is to determine optimal weights for a uniform linear beam 
former. In essence, this design problem can be equivalently translated to a linear-phase FIR filter design problem, 
whose specifications are given in Table I. For comparison, we also employ the successive thinning and minimum 1-
norm algorithms of 4] to design FIR filters. Although these two algorithms are originally proposed for sparse FIR 
filter designs with peak error constraints, they can be readily extended to deal with WLS designs. Designs with 

various within [2, 6] are conducted in this example. Note that when  the obtained solution is optimal to the 

WLS design problem (5). All the design results are summarized in Table II. For , magnitude and impulse 
responses of the linear phase FIR filters designed, respectively, by the proposed algorithm, and the successive 
thinning and minimum 1-norm algorithms of [4] are depicted in Fig. 2. Due to the symmetric structure of a linear-
phase FIR filter, only half of impulse responses are shown in Fig. 2(c). In each design, the minimum-increase and 
smallest-coefficient selection rules of the successive thinning algorithm yield the same design result. Thereby, we 
only plot in Fig. 2 the magnitude and impulse responses of the 
FIR filter obtained by the minimum-increase rule of the successive thinning algorithm. 
It can be observed that the proposed algorithm can achieve design results comparable to or better than those of the 
successive thinning algorithm in most of designs. The proposed algorithm attains sparser designs than the successive 

thinning algorithm when   , 5.0, and 6.0 at a cost of higher magnitude approximation errors. For 

 FIR filters designed by these two algorithms have the same number of zero-valued coefficients. 

However, the design results obtained by the proposed algorithm have lower peak errors but higher approximation 

errors. In the designs of  both the proposed algorithm and the successive thinning algorithm 
can achieve the same results. Compared with the minimum 1-norm algorithm, the proposed algorithm yields much 
better designs in terms of the sparsity of obtained FIR filters. 
 

For the design with , we also plot in Fig. 3 the variation of  with respect to the 
iteration number . It can be observed that the proposed algorithm depicted in Fig. 1 is repeated for two times. During 

the second stage, the curve decreases monotonically with respect to . Nevertheless, several leaps appear in the 
curve of the first stage. A large number of experiments reveal that these leaps generally happen with the change of 
the number or indices of zero-valued coefficients. 
 
 
 
 
 
 
 



 

TABLE II NUMBER OF ZERO-VALUED COEFFICIENTS AND APPROXIMATION ERRORS FOR DESIGN EXAMPLE 

 Proposed algorithm Minimum 1-norm algorithm [21] 
Sparsity of MR (X10-

4) 
of MR (X10-

2) 
Sparsity of MR (X10-

4) 
of MR (X10-

2) 
2.0 0 0.643 1.970 0 0.643 1.970 
2.5 10 0.962 2.922 6 0.739 2.031 
3.0 12 1.079 3.020 10 1.072 2.580 
3.5 14 1.310 3.223 12 1.173 2.408 
4.0 16 1.591 3.270 14 1.471 2.745 
4.5 18 2.011 3.638 16 1.920 3.199 
5.0 20 2.451 4.358 16 1.920 3.202 
5.5 20 2.451 4.369 18 2.435 3.699 
6.0 22 2.901 4.454 18 2.435 3.699 



 

V. CONCLUSION 
A novel sparse FIR lter design algorithm in the WLS sense has been presented in this paper. In order to tackle the 
nonconvexity of the original design problem incurred by the l 0–norm objective function, an iterative design 
procedure is developed in Section C. In each iterative step, by use of the design result attained in the last iteration, a 
constrained sub-problem is rst constructed. Furthermore, it is demonstrated that the design result obtained   is 
optimal to each sub-problem. Design results obtained by the iterative procedure is nally re ned bysolving (22). The 
design procedure can be repeated for several times to further improve the design performance. It is worth noting that 
the proposed algorithm is essentially independent on the problem formulation. It can be applied to solve any design 
problem, which can be formulated in the form of (8). Simulation results reveal that the proposed algorithm can 
achieve design results comparable to or better than those of some other popular sparse lter design approaches. 
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