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Abstract-Network monitoring is a primary requirement for any network security. For monitoring network activities, we 

present the concept of Traffic Dispersion Graphs which can help easy identification of access patterns over a network. We 

also define an adjacency matrix attack graph to analyze and locate potential risks to protect critical network systems 

against multi step attacks. We suggest optimal solutions and configurations to next generation malware filter, based on 

graph-theoretic concepts to assess the importance of individual routers within the network, given a traffic pattern.  
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I. INTRODUCTION 

In today’s globalized world, each and every activity is interlinked in one way or the other. Through the course of 

this paper we shall be analyzing computer networks, the flow of traffic or data from one computer to another and 

finally understand how this data can be at danger and how can it be saved? We assume every computer to be a node 

in a graph. The connections between two computers can be represented as an edge. The flow of data is in the 

direction of these edges. We can divide data into. A system of acknowledgment can be developed once a packet 

reaches a node i.e. a computer over the system. 

II. TRAFFIC DISPERSION GRAPHS 

A major problem these days is keeping a check on the traffic and thus detecting applications that are not required. 

This is because many applications obfuscate their tra c using unregistered port numbers or payload encryption. In 

this paper, we propose the use of Tra c Dispersion Graphs (TDGs) as a way to monitor, analyze, and visualize 

network tra c. TDGs model the social behavior of hosts (“who talks to whom”), where the edges can be defined to 

represent di erent interactions (e.g. the exchange of a certain number or type of packets). With the introduction of 

TDGs, we are able to harness a wealth of tools and graph modeling techniques from a diverse set of disciplines. In 

this work, we propose a di erent way of looking at network tra c that focuses on network-wide interactions of 

hosts (as seen at a router. We argue that there is a wealth of information embedded in a TDG. For example, a 

popular website will have a large in-degree, while P2P hosts will be tightly connected. An edge can represent the 

exchange of at least one packet. In other words, a TDG can represent a particular type of interaction, which gives 

them significant descriptive power, as we discuss later in detail. TDGs can be seen as the natural next step in the 

progression of packet, flow, and host level aggregation. This is because a flow aggregates a set of packets, a host 

aggregates a set of flows originating and terminating at the host and a graph aggregates a group of hosts. Our main 

goal is to propose TDGs as a di erent way of modeling tra c behavior, and show that they: (a) have characteristic 

structure and provide visualizations that can distinguish the nature of some applications, (b) describe tra c along a 
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new “dimension”, the network-wide social behavior, which complements tra c characterization at the packet, flow 

and host levels. 

2.1 TDG Formation: In this paper we focus on port-based TDGs. Throughout the paper and unless stated otherwise, 

when the legacy application for a port uses TCP, we use the EFSP edge filter on the corresponding destination port 

(e.g., TCP Port 25 for SMTP). When we examine UDP interactions, we use the EFP edge filter on the destination 

port of interest (e.g., UDP Port 53 for DNS). For ease of presentation, we will refer to each port-based TDG using 

the name of the dominant or well-known application under that port. For example, the HTTP TDGs is formed by 

using as edges all the TCP SYN packets that have as destination port the number 80. Since we use edge filtering by 

port number, the TDGs capture aspects of any application that uses these ports. We are fully aware that many non-

standard applications, such as P2P tra c, use standard ports such as Port 80. However, port-based filtering is 

consistent with our use of TDGs as a monitoring tool. For example, if at some point tra c at TCP Port 80 appears 

significantly di erent, it could be: (a) a new benign or malicious application tunneling its traffic under that port, or 

(b) a change in the behavior of the traditional application. 

Figure 1 Traffic Dispersion Graph 

2.2 TDG Visualization: Traditionally, visualization of traffic in monitoring tools has largely been limited to 

visualizing measures of tra c volumes on a per flow basis. By contrast, we show that TDGs lend themselves to 

simple graphical visualizations of interaction patterns. We can identify several distinctive structures and patterns in 

TDGs, which are indicative of the behavior of di erent applications. Node degrees - The degrees of various nodes 

and their connectivity in a TDG helps us in visually determining the type of relationship between the nodes. 

2.3 CONCLUSIONS AND FUTURE WORK  

Two essential features in network monitoring tools dealing with vast amounts of network data are aggregation and 

the ability to spot patterns. TDGs represent a natural extension of previous approaches that have aggregated at the 

packet, flow, and host levels by aggregating across nodes. The aggregation across nodes also reveals patterns of 

social interaction across nodes that are specific to applications. These interaction patterns or graph structures can 

then be used to visually and quantitatively monitor existing applications and potentially detect concealed 

applications and mal-code. Assuming that not many diverse applications use the same port number, port-based 

TDGs can be used in order to identify the type of application utilizing a given port. We envisage such a system 

working as follows. First, given any type of edge filter (e.g., a port number) we first construct the TDG. Next, using 

graph metrics, we identify the nature of the application on that port (e.g., if is a client-server, peer-to-peer, or 

malware application). The filter selection can be: (a) extracted automatically, triggered by an anomalous behavior or 

(b) given a priori by the network administrator, deviations can be used to trigger an alarm. 

III. INTRODUCTION TO ATTACK GRAPHS 

3.1 Attack Graphs Generation: Several tools measure point-based vulnerabilities on individual hosts. However, 

vulnerabilities on a network being of causal relationships actually arouse more impact and damage to a whole 

network and persist longer and more undetectable if we are unable to defend against them in relevance. Attack 

Graphs of Automated Generation encode the causal relationships among vulnerabilities and tell whether critical 
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assets are secure enough against potential multi-step combining attacks. The automated tool succeeds to automate 

the generation of attack graphs and releases administrators from error-prone and arduous manual work. Therefore, it 

has become a desirable tool for administrators to analyze their networks, report potential risks and protect their 

networked assets. But there is a limitation to it, that is, the complexity problem, regarding the size of the network 

and vulnerabilities that exist in the network. In practice, attack graphs always exceed human ability to visualize, and 

understand. 

3.2 A Motivating Example: A network configuration shows connections between machines and vulnerabilities’ 

distribution on a network. A type graph tells the dependency or exploits relations between vulnerabilities. Out of the 

two inputs, a vulnerability-based attack graph can be drawn out, in which a security-related vulnerability or 

condition represents the system state, and an exploit between vulnerabilities is modeled as a transition. Figure 

illustrates a network configuration example. The left side is the network configuration graph. h1 is a machine    

h1(v2,v3) 

h3(v1,v3)  

h2(v1,v2)  

Figure 2: Dependencies   Figure 3: Machine 

Having vulnerabilities v2 and v3 (these vulnerabilities are generalized with simplified notations, which do not 

express any concrete vulnerability but conceptual ones mainly for their relationships). h2 has vulnerabilities v1 and 

v2. h3 has vulnerabilities v1 and v3. The right side is a type graph that expresses dependent relations between 

vulnerabilities. v1 is the first vulnerability that is assumed satisfied on its own. v2 is dependent on the satisfaction of 

v1. v3 is dependent on the satisfaction of v2. Therefore, v1 is the pre-condition of v2; v2 is the precondition of v3. 

In another way, we can say v2 is the post-condition of v1 and v3 is the post-condition of v2. Here the satisfied or 

satisfaction means that vulnerability on a machine, whose preconditions have all been satisfied by an attacker, can be 

reached or acquired by the attacker now. Acquiring the vulnerability-based attack graph has many approaches. 

However, a direct way is to find all the attack paths, and then uses them to set up an attack graph.  

Figure 4: Attack Paths 

3.3 Adjacency Matrix Clustering: The rows and columns of an adjacency matrix could be placed in any order, 

without affecting the structure of the attack graph the matrix represents. But orderings that capture regularities in 

graph structure are clearly desirable. In particular, we seek orderings that tend to cluster graph vertices (adjacency 

matrix rows and columns) by common edges (non-zero matrix elements).  

This allows us to treat such clusters of common edges as a single unit as we analyze the attack graph 

(adjacency matrix). In some cases, there might be network attributes that allow us to order adjacency matrix rows 

and columns into clusters of common attack graph edges. For example, we might sort machine vertices according to 

IP address, so that machines in the same subnet appear in consecutive rows and columns of the adjacency matrix. 

Unrestricted connectivity within each subnet might then cause fully connected (all ones) blocks of elements on the 

main diagonal. 

In general, we cannot rely on a priori ordering of rows and columns to place the adjacency matrix into 

meaningful clusters. We therefore apply a particular matrix clustering algorithm [23] that is designed to form 

homogeneous rectangular blocks of matrix elements (row and column intersections). Here, homogeneity means that 
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within a block, there is a similar pattern of attack graph edges (adjacency matrix elements). This clustering 

algorithm requires no user intervention, has no parameters that need tuning, and scales linearly with problem size. 

This algorithm finds the number of row and column clusters, along with the assignment of rows and columns to 

those clusters, such that the clusters form regions of high and low densities. Numbers of clusters and cluster 

assignments provide an information-theoretic measure of cluster optimality. The matrix clustering algorithm is 

based on ideas from data compression, including the Minimum Description Length principle [40], in which 

regularity in the data can be used to compress it (describe it in fewer symbols). Intuitively, one can say that the more 

we compress the data, the better we understand it, in the sense that we have better captured its regularities.  

Figure 5: Adjacency Matrix Clustering 

3.4 Matrix Operations for Multi-Step Attacks: The adjacency matrix shows the presence of each edge in a network 

attack graph. Taken directly, the adjacency matrix shows every possible single-step attack. In other words, the 

adjacency matrix shows attacker reachability within one attack step. As we describe later, we can navigate the 

adjacency matrix by iteratively matching rows and columns to follow multiple attack steps. We can also raise the 

adjacency matrix to higher powers, which shows multi-step attacker reachability at a glance. For a square (n × n) 

adjacency matrix A and a positive integer p, then Ap is A raised to the power p: In other words,       

Ap =    (A AA……. A) p times                  (1) 

Here, matrix multiplication is in the usual sense. For example, an element of A 2

In Equation , the matching of rows and columns in matrix multiplication (index k) corresponds to matching steps of 

an attack graph. The summation over k counts the numbers of matching steps. Thus, each element of A2 gives the 

number of 2-step attacks between the corresponding pair (row and column) of attack graph vertices. Similarly, A 3 

gives all 3-step attacks; A4 gives all 4-step attacks, etc.  

For raising a (square) matrix to an arbitrary power, we can improve upon naïve iterative multiplication. 

This involves a spectral decomposition [41] of A. An n × n matrix always has n Eigen values. These form an n × n 

diagonal matrix D and a corresponding matrix of nonzero columns V that satisfies the Eigen value equation AV = 

VD. If the n Eigen values are distinct, then V is invertible, so that we can decompose the original matrix A as  

A  =VDV-1                                            (2) 

Here D is a diagonal matrix formed from the eigen values of A, and the columns of V are the corresponding 

eigenvectors of V.  

It is then straightforward to prove that Ap = VDpV-1, via V-1V = I. This product VDpV-1 is easy to compute since Dp

is just the diagonal matrix with entries equal to the p th power of those of D, i.e.,  

Figure 6: Diagonal Matrix from eigen values 

3.5 Attack Prediction: In our approach, we place detected intrusions within the context of predictive attack graphs 

based on known vulnerability paths. We first compute a vulnerability-based attack graph from knowledge of the 
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network configuration, attacker exploits, etc. We then form the adjacency matrix A for the attack graph, perform 

clustering on A. We then compute either the transitive closure of A, or the multi-step reachability matrix. 

Then, when an intrusion alarm is generated, if we can associate it with an edge (e.g., exploit) in the attack 

graph, we can thus associate it with the corresponding element of any of the following:  

• The adjacency matrix A (for  single-step reachability).  

• The multi-step reachability ma trix in Equation (6) (for multi-step reachability).  

• The transitive closure of A (for all-step reachability). From  this, we can immediately categorize alerts based on the 

numbers of associated attack steps. For example, if an alarm occurs within a zero-valued region of the transitive 

closure, we might conclude it is a false alarm, i.e., we know it is not possible according to the attack graph. Or, if an 

alarm occurs within a single-step region of the reachability matrix, we know that it is indeed one of the single-step 

attacks in the attack graph. Somewhere in between, if an alarm occurs in a p-step region, we know the attack graph 

predicts that it takes a minimum of p steps to achieve such an attack. By associating intrusion alarms with a 

reachability graph, we can also predict the origin and impact of attacks. That is, once we place intrusion alarm on 

one of the vulnerability-based reachability graphs, we can navigate the graph to do attack prediction.  

The idea is to project to the main diagonal of the graph, in which row and column indices are equal. Vertical 

projection (along a column) leads to attack step(s) in the forward direction. That is, when one project along a column 

to the main diagonal, the resulting row gives the possible steps forward in the attack. We can predict attack origin 

and impact either (1) one step away, (2) multiple steps away with the number of steps distinguished, or (3) over all 

steps combined. Here are those 3 possibilities:  

• When using the adjacency matrix A, non-zero elements along the projected row show all possible single steps 

forward. Projection also can be done iteratively, to follow step-by-step (one at a time) in the attack.  

• When using the multi-step reachability matrix in Equation (6), the projected row shows the minimum number of 

subsequent steps needed to reach another vertex. We can also iteratively project, either choosing single-step 

elements only, or “skipping” steps by choosing multi-step elements.  

• When using the transitive closure, the projected row sh ows whether a particular vertex can be subsequently 

reached in any number of steps. Here, iterative projection is not necessary, since transitive closure shows 

reachability over all steps. We see that projection along a column of a reachability matrix predicts the impact 

(forward steps) of an attack. Correspondingly, we can project along a row (as opposed to a column) of such a matrix 

to predict attack origin (backward steps). In this case, when one projects along a row to the main diagonal, the 

resulting column gives the possible steps backward in the attack. As before, we can predict attack origin using either 

the adjacency matrix, the multi-step reachability matrix, or the transitive closure matrix. Just as for forward 

projection, this gives either single-step reachability, multi-step reachability, or all-step reachability, but this time in a 

backward direction for predicting attack origin. 

3.6 CONCLUSION: In this paper, we defined the adjacency matrix attack graphs, which are a novel concept in the 

visualization and generation of attack graphs and successfully avoid the complexity problem. In the light of its 

definition, we formalized the adjacency matrix attack graph-based probabilistic security metric with the extension 

definition concerning cycles. The advantage of our proposed approach is that it simplifies the visualization to human 

eyes, which replaces those cluttering edges of an attack graph. It separates the complexity of attack graphs into two 

fractions: the network connectivity property and the interactions among an exploit dependency attack graph. No 

matter how many machines in a network, the visualization or representation always is controlled within a certain 

number of vulnerabilities and exploits. The adjacency matrix attack graph also facilitates the probabilistic 

computations without the exponential explosion, the complexity of which is within O(n2).
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IV. MALWARE IDENTIFICATION 

Once a system has been identified with irregularities from the original work we can predict an malware is 

trying to attack the system. Computer networks have become an ubiquitous but vulnerable aspect of corporate, 

university, and government life. Yet the increased complexity of computer networks combined with the ingenuity of 

attacker’s means that they remain susceptible to expensive attacks from worms, viruses, Trojans, and other 

malicious software, which we simply refer to as malware. Network traffic filtering is one of many security methods 

available tone work administrators. Network traffic filters provide protection by sampling packets or sessions and 

either comparing their contents to known malware signatures or looking for anomalies likely to be malware. 

Filtering capabilities have begun to be integrated into routers themselves, so as to reduce hardware deployment costs 

and to allow for more adaptive security. Future traffic filters are expected to be configurable, networked, and even 

autonomous. Our objective in this paper is to investigate the deployment and configuration issues of such devices 

within an optimization framework. 

Computer networks have become a ubiquitous but vulnerable aspect of corporate, university, and government life. 

Yet the increased complexity of computer networks combined with the ingenuity of attackers means that they 

remain susceptible to expensive attacks from worms, viruses, Trojan’s, and other malicious software, which we 

simply refer to as malware [1]–[3]. Network traffic filtering is one of many security methods available to network 

administrators. Network traffic filters provide protection by sampling packets or sessions and either comparing their 

contents to known malware signatures or looking for anomalies likely to be malware. Filtering capabilities have 

begun to be integrated into routers themselves, so as to reduce hardware deployment costs and to allow for more 

adaptive security [4]. Future traffic filters are expected to be configurable, networked, and even autonomous. Our 

objective in this paper is to investigate the deployment and configuration issues of such devices within an 

optimization framework. 

4.1 Model and Problem Formulations: There are a lot of goals and restrictions that a Computer network 

administrator’s faces at the network security level and the financial or at technical cost of achieving that security 

level. We combine and express these constraints and objectives within the four malware filter placement problems 

evaluated in this paper. We consider a network of configurable, networked routers with traffic filtering capabilities 

which can be dynamically and remotely set by a centralized server. Some subsets of these routers are source routers 

and another (potentially overlapping and typically identical) subset is destination routers. Other routers are core 

routers. We do not explicitly consider the effectiveness of malware filters. We assume that filtered packets are 

marked so that we do not redundantly filter particular packets. In addition, we assume that the network administrator 

has full knowledge of the network traffic, possibly with some delay. Finally, we do not consider how the act of 

filtering malware will alter the quantity of traffic on a link or the quantity of malware at future routers because we 

assume that the proportion of malware in the network is relatively low. Although we will discuss here packet 

filtering, all of the developed theory and results also apply to the filtering of sessions.

4.2 Centrality Measures for Network Link Assessment: We introduce two new centrality measures within the context 

of communication networks. Traditional centrality measures, as described in [9], involve source-destination pairs, 

but each pair is weighted identically. A more relevant and accurate centrality measure would weight source- 

destination pairs according to the magnitude of traffic that travels between them. Moreover, traditional centrality 

measures consider every node to be a potential source and destination, but this is not the case for core routers. 

Therefore, we propose only considering those nodes that are in fact sources and/or destinations (i.e. no core routers) 

in our centrality calculation. Traffic betweenness centrality (TBC) is betweenness centrality with the above two 

changes. Let R be a set of all vertices in an undirected graph. Let S  R contain all the sources, D  R be the set of 

all destinations, and P be the set of all source-destination pairs (s,d). The number of shortest paths between s  R 

and d  R is sd. The number of these shortest paths that pass through some r  R is sd(r). Moreover, the amount of 

traffic between s and d is usd. TBC assumes that there are multiple shortest paths between a source and destination 

and that they are equally likely to be used. TBC of a router r, denoted by CTB(r), is then defined as the fraction of 
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shortest paths of all source- destination pairs that pass through a particular router, with each source-destination pair 

being weighted by its traffic magnitude.

CTB(r):=X(s,d) Pusd sd(r) sd    (1) 

If at least one shortest path for any source-destination pair passes through a given router r, then CTB(r) > 0. 

A special case would be based on stress centrality and called traffic stress centrality (TSC). Here we do not assume 

that all shortest routes are used with equal likelihood but rather that one is chosen. In this case if a node is on this 

selected shortest route, then sd = 1, otherwise it is 0. TSC of a router r is then defined as : 

CTS(r) :=X(s,d) Pusd sd(r) (2) 

There exists an intuitive but not immediately obvious relationship between the traffic centrality measures 

defined here and the actual traffic that passes through a router. Assume that the traffic between all source-destination 

pairs on this network is routed using either (a) a load-balancing shortest path routing scheme where all the packets 

sent from a source node to a destination one are equally likely to be delivered through multiple shortest paths 

between them or (b) a simple shortest path scheme where all packets between the source and the destination nodes 

are delivered consistently through a single shortest route. Then, the amount of traffic on a router r is equal to the 

TBC measure in the case of routing scheme (a) and the TSC measure in the case of scheme (b). These relationships 

can easily be proved by comparing the definitions of traffic centrality measures with simple equations for traffic at 

routers under these routing schemes. Traffic centrality measures capture the importance of routers on a network, and 

hence are helpful when defining objective functions for malware filtering problems. 

4.3 Conclusions And Future Work: We have studied malware filter placement problems from an optimization 

perspective. After drawing the connection between traffic-weighted centrality measures and traffic measurements at 

routers, we chose a convex cost objective involving centrality measures. The first optimization problem we 

considered involves minimizing this cost subject to sampling and effective sampling rate constraints, as well as a 

constraint on the amount of traffic that can be filtered network-wide. Next we studied the case where instead of 

placing a hard upper bound on the quantity of filtering, we assign a cost to filtering and minimize a sum of it and the 

cost metric derived earlier. We then minimized a different cost metric involving a sum of filter deployment and 

filtering costs less a utility measure under the same constraints. We found exact or approximate centralized and 

dynamic solutions to these optimization problems and simulated the resulting strategies. Network traffic data from 

the Abilene dataset was used in these simulations. We compared these strategies with benchmark approaches to 

network traffic filtering. The simulation results confirm that by applying optimization tools we can achieve lower 

costs in a variety of contexts and when traffic magnitudes change rapidly. There are several obvious extensions to 

this work. The optimization problems developed here should be solved in a decentralized manner for increased 

reliability and security. Various update algorithms could be considered when evaluating decentralized solutions. A 

natural extension to this paper would involve incorporating filter effectiveness with Bayesian analysis. This would 

al- low for a comparison between signature-based and anomaly- based filters. Constraints on the amount of 

signature-based and anomaly-based filtering could be set. Finally, we are planning to use the Abilene data toper- 

form more thorough simulations with the realistic Network Security Simulator (NeSSi).
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