An Efficient Carry Select Adder with Reduced Area and Low Power Consumption

Tumma Swetha
M.Tech student, Asst. Prof.
Department of Electronics and Communication Engineering
S.R Engineering College, Warangal, Andhra Pradesh, India

K. Navatha
Asst. Prof.
Department of Electronics and Communication Engineering
S.R Engineering College, Warangal, Andhra Pradesh, India

Abstract— Carry Select Adder (CSLA) is one of the fastest adders used in many data-processing processors to perform fast arithmetic functions. From the structure of the CSLA, it is clear that there is scope for reducing the area and power consumption in the CSLA. This work uses a simple and efficient gate-level modification to significantly reduce the area and power of the CSLA. Based on this modification 8-, 16-, 32-, and 64-bit square-root CSLA (SQRT CSLA) architecture have been developed and compared with the regular SQRT CSLA architecture. The proposed design has reduced area and power as compared with the regular SQRT CSLA with only a slight increase in the delay. This work evaluates the performance of the proposed designs in terms of delay, area, power, and their products by hand with logical effort and through custom design and layout in 0.18-μm CMOS process technology. The results analysis shows that the proposed CSLA structure is better than the regular SQRT CSLA.

Keywords — CSLA, ASIC, Power and area efficient, BEC

I. INTRODUCTION

In VLSI system design the design of area and power efficient high speed logic systems are most essential. In digital adders, the speed of addition is limited by the time required to propagate a carry through the adder. The sum for each bit position in an elementary adder is generated sequentially only after the previous bit position has been summed and a carry propagated into the next position. The CSLA is used in many systems to overcome the problem of carry propagation delay by independently generating multiple carries and then select a carry to generate the sum. But the CSLA is not area efficient because it uses multiple pairs of Ripple Carry Adders (RCA) to generate partial sum and carry by considering carry input cin = 0 and cin = 1, then the multiplexers are used to get final sum and carry are used. The Binary to Excess-1 converter (BEC) is used instead of RCA with Cin = 1 in the regular CSLA to achieve lower area and power consumption. The main advantage of this BEC logic comes from the lesser number of logic gates than Full Adder (FA) structure.

II. CALCULATION OF DELAY AND AREA OF THE BASIC ADDER BLOCKS

The AND, OR and INVERTER (AOI) implementation of XOR gate is shown in fig.1. The operations of gates between the dotted lines are performing the operations in parallel and the numeric representation of each gate indicates the delay.
III. BINARY EXCESS-1 CONVERTER

To reduce the area and power consumption Binary Excess-1 converter instead of RCA with Cin = 1. This is the main concept of the paper, so as to reduce delay compared to regular SQRT CSLA. To replace the n-bit RCA, an n+1 bit BEC is required. A structured and the function table of a 4-b BEC are shown in fig 2 and table II, respectively. Fig 3 illustrates how the basic function of the CSLA is obtained by using the 4-bit BEC together with the mux. One input of the 8:4 mux gets as it input (B3, B2, B1, and B0) and another input of the mux is the BEC output. This produces the two possible partial results in parallel and the mux is used to select either the BEC output or the direct inputs according to the control signal cin. The Boolean expressions of the 4-bit BEC is listed as

\[
\begin{align*}
X_0 &= \neg B_0 \\
X_1 &= B_0 \oplus B_1 \\
X_2 &= B_2 \oplus (B_0 \land B_1) \\
X_3 &= B_3 \oplus (B_0 \land B_1 \land B_2)
\end{align*}
\]

IV. DELAY AND AREA EVALUATION METHODOLOGY OF REGULAR 16-B SQRT CSLA

The structure of the 16-b regular SQRT CSLA is shown in fig 4. It has five groups of different size RCA. The delay and area evaluation of each group are shown in fig 6, in which the numerical specify the delay values.

e.g., sum2 requires 10 gate delays.

\[
\text{Mux} = 12(3*4)
\]

The estimated maximum delay and area of the other groups in the regular SQRT CSLA are evaluated and listed in table shown in fig. We again split the structures into five groups. The delay and area evaluation of each group are shown in below fig.
Table 1: Function table of 4 b BEC

<table>
<thead>
<tr>
<th>H(3:0)</th>
<th>X(3:0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0001</td>
</tr>
<tr>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>1110</td>
<td>1111</td>
</tr>
<tr>
<td>1111</td>
<td>0000</td>
</tr>
</tbody>
</table>

Figure 2: Regular 16 b SQRT CSLA

V. METHOD PROPOSED BASED ON THE BEC

1) The group2 in fig 7(a) has one 2-b RCA which has 1FA and 1HA for cin = 0. Instead of another 2-b RCA with cin = 1 a 3-b BEC is used which adds one to the output from 2-b RCA. Based on the consideration of delay values of table I, the arrival time of selection input c1[t = 7] of 6:3 mux is earlier than the s3[t = 9] and c3[t = 10] and later than the s2[t = 4]. Thus, the sum3 and final c3[t = 10] and later than the s2[t = 4]. Thus, the sum3 and final c3 (output from mux) are depending on s3 and mux and partial c3 (input to mux) and mux, respectively. The sum2 depends on c1 and mux. FA = 13(1 * 13) inputs from the BEC’s. thus, the delay of the remaining groups depends on the arrival time of mux selection input and the mux delay. For the remaining groups the arrival time of mux selection input is always greater than the arrival time of data.

2) The area count of group2 is determined as follows:

\[\text{Gate cont} = 43(\text{FA + HA + Mux + BEC}) \]

- \(\text{FA} = 13(1 * 13) \)
- \(\text{HA} = 6(1 * 6) \)
- \(\text{AND} = 1 \)
- \(\text{XOR} = 10(2 * 5) \)
- \(\text{Mux} = 12(3 * 4) \)
- \(\text{NOT} = 1 \)
3) Similarly, the estimated maximum delay and area of the other groups of the modified SQRT CSLA are evaluated and listed in table IV. Comparing tables III and IV, it is clear that the proposed system is better in delay and area, simultaneously in power.

Figure 4 Delay and area evaluation of modified SQRT CSLA in group 2, group 3, group 4, group 5
VI. CONCLUSION

When the comparison between the SQRT CSLA and modified SQRT CSLA is considered, there is the difference in simple approach is proposed in this paper to reduce the area and power of SQRT CSLA architecture. The reduced number of gates of this work offers the great advantage in the reduction of area and also the total power. The compared results show that the modified SQRT CSLA has delay, area and power of the 16-b modified SQRT CSLA are significantly reduced. Area and delay values of SQRT CSLA and MODIFIED SQRT CSLA are given below, which are evaluated based on the xilinx program of SQRT and MODIFIED SQRT CSLA.

Table II. Comparision of regular and modified SQRT CSLA

<table>
<thead>
<tr>
<th>Word Size</th>
<th>Adder</th>
<th>Delay (ns)</th>
<th>Area (um²)</th>
<th>Leakage Power</th>
<th>Switching power</th>
<th>Total Power</th>
<th>Power-Delay Product (10⁻³)</th>
<th>Area-Delay Product (10⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-bit</td>
<td>Regular CSLA</td>
<td>1.719</td>
<td>991</td>
<td>0.007</td>
<td>101.9</td>
<td>203.9</td>
<td>350.5</td>
<td>1703.5</td>
</tr>
<tr>
<td></td>
<td>Modified CSLA</td>
<td>1.958</td>
<td>895</td>
<td>0.016</td>
<td>94.2</td>
<td>188.4</td>
<td>368.8</td>
<td>1752.4</td>
</tr>
<tr>
<td>16-bit</td>
<td>Regular CSLA</td>
<td>2.775</td>
<td>2272</td>
<td>0.017</td>
<td>263.7</td>
<td>527.5</td>
<td>1463.8</td>
<td>6304.8</td>
</tr>
<tr>
<td></td>
<td>Modified CSLA</td>
<td>3.048</td>
<td>1959</td>
<td>0.013</td>
<td>235.9</td>
<td>471.8</td>
<td>1438.0</td>
<td>5879.6</td>
</tr>
<tr>
<td>32-bit</td>
<td>Regular CSLA</td>
<td>5.137</td>
<td>4783</td>
<td>0.036</td>
<td>563.6</td>
<td>1127.3</td>
<td>5790.9</td>
<td>24570.2</td>
</tr>
<tr>
<td></td>
<td>Modified CSLA</td>
<td>5.422</td>
<td>3985</td>
<td>0.027</td>
<td>484.9</td>
<td>969.9</td>
<td>5316.9</td>
<td>21845.7</td>
</tr>
<tr>
<td>64-bit</td>
<td>Regular CSLA</td>
<td>9.174</td>
<td>9016</td>
<td>0.075</td>
<td>1212.4</td>
<td>2425.0</td>
<td>22246.9</td>
<td>91969.3</td>
</tr>
<tr>
<td></td>
<td>Modified CSLA</td>
<td>9.519</td>
<td>8183</td>
<td>0.057</td>
<td>1025.0</td>
<td>2050.1</td>
<td>19514.9</td>
<td>77893.9</td>
</tr>
</tbody>
</table>
REFERENCES

