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Abstract:This paper presents a freeway traffic state estimation and METANET traffic flow model. Since the 
environmental conditions on a freeway may change over time (e.g., changing weather conditions), parameter estimation is 
also considered. This paper also provides the introduction to Extended Kalman filter and Unscented Kalman filter. We 
compare the performance of the extended Kalman filter and the unscented Kalman filter for state estimation, parameter 
estimation, joint estimation and dual estimation. Furthermore, the performance is evaluated for different detector 
configurations.  

Index Terms – Advanced Traveler Information Systems (ATIS), model predictive control (MPC), Kalman Filter (KF), 
Extended Kalman Filter (EKF), UnscentedKalman Filter (UKF). 
 

I. INTRODUCTION 
 
Advanced Traveler Information Systems (ATIS) and dynamic traffic management (DTM) usually require some 
estimate of the current traffic state as an input. The estimated state can also be used in a model predictive control 
(MPC) approach [1] to optimize traffic conditions. In general, ATIS/DTM/MPC applications need the traffic states 
in real time. Usually, the traffic state cannot be directly measured (everywhere) but needs to be estimated 
(interpolated) from incomplete, noisy, and local traffic data. Commonly, volumes (flows) or average vehicle speeds 
are measured at certain locations in the traffic network, e.g., by double induction loop detectors or by floating car 
data. To estimate the total traffic state from these point measurements, interpolation between the sensors is 
necessary. 
 
In the current state of practice, often, very simple methods are used to perform such a task, such as the piecewise 
constant speed-based method and the piecewise linear speed-based method [2]. These simple methods assume that 
the behavior of traffic is always equal under all traffic conditions. In reality, the direction in which information 
travels through the network depends on the traffic conditions: under free-flow conditions, information travels 
downstream, but under congested conditions, information travels upstream. Therefore, these simple methods exhibit 
significant bias [3]. One reason for their continuous use in practice is that the alternatives up to now have been too 
slow to perform in real time. 
 
Dynamic traffic control offers possibilities to avoid traffic jams on freeways by making better use of the available 
infrastructure. Measures such as ramp metering, dynamic speed limits and route guidance increase the efficiency, 
reliability and safety of traffic flows. The choice of the actual control actions is typically based on the current traffic 
state. However, the traffic state is usually not available or not directly measured everywhere in the traffic network 
(e.g., density is in general not measured). The data may also be corrupted or be unreliable because of malfunctioning 
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or noisy sensors (magnetic loops or cameras). In other application areas the state of a dynamical system is typically 
estimated by the Kalman filter (KF) [3] or one of its variants, such as the extended Kalman filter (EKF) [4], the 
unscented Kalman filter (UKF) [5], [6] or by particle filters (PF) [7]. In the selection of the appropriate filter type 
and the filter configuration for a given problem several design choices are involved. The goal of this paper is to 
investigate some of these choices, namely the selection of an appropriate filter type and configuration, and the 
influence of detector configurations on the performance. These different filter configurations can be used to estimate 
the state of the process, the parameters, or both. When both the state and the parameters are estimated, two common 
approaches exist, the joint filtering approach where both the state and the parameters are considered as the states of 
an augmented system and “state” estimation is performed for the augmented state, and the dual filtering approach 
where the state and the parameters are estimated in parallel by two separate filters. It has been suggested that dual 
filtering has better convergence properties [4]. In simulations we compare the performance of both filters, and 
conclude that this suggestion is not confirmed for our case. 
 
Another aspect that influences the performance is the availability and the number of outputs (measurement sources). 
In general, the fewer outputs there are, the worse the estimate of the state. If there are too few outputs then some 
states may become unobservable, i.e., the measurements do not carry enough information about the state. In this 
paper, we also investigate the effect of different measurement loop configurations on the performance. 
 
Several filters in several configurations have already been investigated in literature. In [8] an extended study is 
presented of estimation schemes with the EKF in the joint filtering setting [4], [9]. This approach is evaluated for 
real traffic. In [10] a PF is applied to estimate the traffic state (speed and density) of a 4-segment freeway stretch 
based on flow and speed measurements at the boundaries of the stretch. A different approach was developed in [13] 
where a mixture Kalman filter is employed to simultaneously detect the discrete traffic state (free-flow or congested) 
and track the traffic speed. While in most papers the intended use of the estimated state is control, in [13] queue tail 
and head tracking and travel time estimation is considered as a service to drivers. According to recent developments, 
the UKF is an interesting alternative to the EKF for nonlinear systems, since it has a higher accuracy [5], [6]. 
Furthermore in all publications mentioned above, the EKF is used in the joint filtering setting in which both the 
traffic state and the parameters are estimated, while in [4] it is suggested that the dual filtering setting may exhibit 
better convergence properties. 
 
The contribution of this paper is the comparison of the EKF and UKF for freeway traffic state estimation, parameter 
estimation, joint and dual estimation, and the evaluation of the performances as a function of the detector 
configuration. In the remainder of the paper the different filters will be analyzed with the freeway traffic flow model 
METANET. The various filters and their possible configurations are discussed in Section II, and the METANET 
model is explained in detail in Section III. This model is used for the simulations in Section IV, and the results are 
presented in Section V. 
 

II. STATE ESTIMATION 
 
In state estimation problems, the state-space representation of the dynamical system is used. This describes the 
evolution of the system state xk over time, and the measurements yk as a function of the state1: 

 
xk= f(xk-1,w,vk-1)              (1) 

yk= g(xk,w,nk)                   (2) 
 
wherew are the model parameters, vkis the state noise, nk the measurement noise, and k the sample step counter. For 
given parameters w these equations define a probability density function (pdf) for the state transition p(xk|xk�1) and 
for the measurement p(yk|xk). 
 
Since the system and the measurements are stochastic, the exact state cannot be inferred from the measurements, 
only the pdf of the state p(xk|y1:k) given all measurements y1:k from sample step 1 to k can be determined. So, the 
goal of the state estimation problem is to determine p(xk|y1:k). Although it is possible to use Bayes’ rule to express 
this conditional density in terms of the state transition pdf p(xk|xk�1), and the measurement pdf p(yk|xk), the 
evaluation of it requires the evaluation of several integrals, which is not possible (analytically) in general [7]. In 
principle it is possible to evaluate these integrals numerically (which is done, e.g., in approximate grid-based 
methods where the state space is discretized [7]), but these methods are in most cases very inefficient. 
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Under certain assumptions the conditional pdfp(xk|y1:k) can be solved (or approximated) by the Kalman filter or its 
extensions, such as the extended/unscented Kalman filter. 
 
Below we give a short overview of the Kalman filter, the extended Kalman filter and the unscented Kalman filter 
and their corresponding assumptions. Note that there are other filtering methods that are not discussed here. 
 
A. Filter types 
 
1) Kalman filter (KF): Theoretically, the Kalman filter is an estimator for what is called the linear-quadratic 
problem, which is the problem of estimating the instantaneous “state” (a concept that will be made more precise in 
the next chapter) of a linear dynamic system perturbed by white noise—by using measurements linearly related to 
the state but corrupted by white noise. The resulting estimator is statistically optimal with respect to any quadratic 
function of estimation error. 
Given a linear system 
 

xk= Axk-1+ vk-1 
yk= Cxk+ nk 

 
with known and constant system matrices A and C. The state noise vk�1 and measurement noise nk are both assumed 
to be additive, and assumed to have a zero mean Gaussian distribution. Furthermore independence between noises at 
different time instants and between the state and measurement noise is assumed: cov{vk1 , vk2} = 0 and 
cov{nk1 , nk2} = 0 for k1 � k2, and cov{vk1 , nk2} = 0 for any k1 and k2. 
 
Under these assumptions the conditional pdfp(xk|y1:k) is also Gaussian, and the Kalman filter expresses analytically 
the mean and covariance of p(xk|y1:k) [4]. The Kalman filter is guaranteed to converge if the state noise excites all 
states and the system (C,A) is observable [3].  The KF is not suitable for nonlinear systems such as the freeway 
traffic, so we will not present the equations. 
 
I.Initialize the estimate   of the state and the covariance Pxk of the state with: 

 = E[x0], 
Px0= E[(x0-  )(x- )T]. 

 
Evaluate steps II and III below for k= 1,2,… 

II.Time update: 
 = f( ,w), 

 
 = Ak-1 PXk-1 AT

k-1 + Rv, 
 

Where w is the parameter vector, and Rv is the covariance of the state noise vk. 
 

III. Measurement update: 
 

Kk=  (Ck  + Rn)-1, 
 =  + Kk(yk- g( , w)), 

Pxk= (I- KkCk) , 
 

Where 
Ak = �x=     ,   Ck = �x=     , 

andRn is the covariance of the measurement noise nk.
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2) Extended Kalman filter (EKF): The assumptions for the EKF are the same as for the Kalman filter, except that the 
state and measurement functions may be nonlinear. To solve the filtering problem, the system is linearized at the 
estimated state for each k [2]. The equations of the EKF are given in Table I. 
The extended Kalman filter does not solve the estimation problem exactly, since approximations are involved. First, 
the system is linearized at the estimated state instead of the real (but unknown) state. Second, by linearization, all 
pdf’s are Gaussian, while the real pdf’s passing through the nonlinear system is obviously non-Gaussian. The 
consequence of these approximations is that convergence cannot be guaranteed. 
 
The Kalman filter is a recursive filter that estimates the state of a linear model based on the last estimate of the state 
and a number of normally distributed observations [25], [26]. When made applicable to nonlinear models, an EKF 
can be used, where a linearization of the nonlinear model around its current state is used [27]. 
 
3) Unscented Kalman filter (UKF): Contrary to the EKF, the UKF does not use a linearization of the system and the 
noises are not assumed to be Gaussian [3], [4]. To represent the mean and the covariance of the (conditional) state 
pdf’s, so-called sigma points are defined with appropriate weights attached to each point. The sigma points and the 
weights are chosen such that their weighted mean and covariance approximate the true mean and covariance of the 
pdf. The UKF approximates the mean and the covariance of the posterior pdf with second order (Taylor) accuracy. 
As the EKF operates with first order accuracy, the UKF can be expected to have better performance and 
convergence properties. Nevertheless, convergence cannot be guaranteedfor the UKF. 
 
The equations of the UKF are given in Table II. The main assumption here is that the state pdf can be sufficiently 
described by its mean and covariance. 
 
B. Filter configurations 
These filters can be used for state estimation, parameter estimation, or for the simultaneous estimation of the state 
and the parameters. These require different filter configurations, which are summarized below. 
 

1) State tracking: The model parameters are assumed to be known. The goal of state tracking is to determine the 
pdfp(xk|y1:k) for every k. 
 
2) Parameter tracking: The model states and measurements are assumed to be known. The state-space model is 
formed for the evolution of the model parameters xpar,k = wk, which is often assumed to be a random walk with noise 
vpar,k. The measurement is written as a function of the system state xk and the model parameters xpar,k, and a “state 
tracking” filter is run for xpar,k : 
 

xpar,k= xpar,k-1+ vpar,k-1            (3) 
yk= gI(xk, xpar,k, nk)           (4) 

 
3) Joint estimation: In joint estimation both the system state and the model parameters are estimated simultaneously. 
To this end, an augmented state vector is defined consisting of both the system state and the model parameters, 
xaug,k = [xT k, xTpar,k]T. Based on (1)–(4) a new state-space system is formed on which the filter is run. 
 
4) Dual estimation: Similarly to joint estimation, in dual estimation the system state and the model parameters are 
estimated simultaneously. However, here the state system (1)–(2) and the parameter system (3)–(4) are kept 
separately, and two filters are run, one for the state estimation, and one for the parameter estimation.  
For each sample step k the result of the state estimation of the previous sample step xk�1 is used as an input for the 
parameter estimator, and vice versa, the result of the parameter estimator of the previous sample step xpar,k�1 is 
used in the state estimatoras shown in Fig. 1. 
 
In [2] it is suggested that the dual filter has better convergence properties than the joint filter. 
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Fig. 1.The dual estimation scheme. The two filters use each other’sestimation from the previous sample step. 
 

III. TRAFFIC MODEL 
 
A widely used traffic flow model is the METANET model [13]. This model is suitable for filtering, since it captures 
the main dynamics of traffic flows, such as freeflow, congested flow, and the transitions between the two. Below we 
present the basic equations of the METANET model, the boundary conditions, and the measurement equations, 
which will be used in the simulation experiments. 
 
A. Basic METANET model 
Consider a freeway link m that is subdivided into Nm segments, each with a length Lm and m lanes, and a discrete 
time step with length T (h). Traffic dynamics is described in terms of the aggregated variables speed vm,i(k) (km/h), 
flowqm,i(k) (veh/h), and density m,i(k) (veh/km/lane), where I is the segment index. 
 
The METANET model equations are given by the fundamental relationship between speed, density and flow 
 

m,i(k) = m,i(k) vm,i(k) m,            (5) 
 
the law of conservation of vehicles. 
 

m,i(k+1) = m,i(k) + T / Lm m(qm,i-1(k)- qm,i(k) + (k))   (6) 
 
 
and a heuristic relationship of the speed dynamics 
 
 

vm,i(k+1) = vm,i(k) + T/� (V( m,i(k)) - vm,i(k) + T/ Lm vm,i(k) (vm,i-1(k) - vm,i(k)) – �T/ � Lm  
 
 

m,i+1(k) - m,i(k)/ m,i(k)+  + (k)      (7) 

V( m,i(k)) = vfree,mexp [ -1/am ( m,i(k)/ crit,m)am ]       (8) 

where (k), and (k), are random variables representing the random (unmodeled) dynamics in the speed and 
density evolution. Furthermore, vfree,m is the free-flow speed in segment m, crit,m is the critical density (the density at 
or above which traffic becomes unstable). 

Time Update  

Time Update  Time Update  

Time Update  

�(k�1)� �(k)�

�(k�1)� �(k)�

(k)

(k)

y(k)
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These model parameters may change due to several external conditions such as weather conditions, percentage of 
trucks, light conditions, etc. This motivates the employment of dual or joint estimation algorithms for on-line 
simultaneous state and parameter estimation. 

 
B. Boundary conditions 
The variables qm,0, vm,0, m,N+1 are boundary variables which incorporate the influence of upstream and 
downstreamsegments from the considered link. Usually qm,0 and vm,0can be measured directly, whereas in practice 
the density m,N+1 is not measured directly and must be estimated. 
Even though qm,0 and vm,0 can be measured directly, the measurements will be corrupted by errors. Therefore we will 
consider all boundary variables as extra states of the system and we will estimate them from the measurement data, 
similarly to the other state variables. This approach is also recommended in [6]. The dynamic evolution of the 
boundary variables is described by a random walk: 
 
C. Measurements 
The most frequently used traffic measurement devices typically measure speed and flow. For the segments that are 
equipped with sensors the measurement equations are: 
 

(k) = qm,i(k) + (k)       (9) 

(k) = vm,i(k) + (k)       (10) 

where (k), and  (k) are the measurement noises for the flow and the speed respectively. 
 

IV. SIMULATION SET-UP 
 
In the simulations, the performances of the UKF and the EKF are compared for several filter configurations. The 
link used in the simulations consists of four segments as shown in Fig. 2. The measurements are taken at the 
downstream end of a segment and consist of speed and flow. Several detector configurations are compared where 
the speed and flow detectors are placed at different locations. 
 

 
Fig. 2.The 4-segment link used for the simulations. Detectors may be 

placed at the boundaries of the segments. 
 

For the evaluation of the different filter configurations artificial data was generated. The choice to use artificial data 
(opposed to real traffic data) was mainly motivated by the fact that for artificial data the real states and parameters 
are known, which allows for the evaluation of the filter performance. The data is generated by running the 
METANET model with a scenario in which the most important traffic phenomena are represented, such as traffic 
jams and upstream propagating waves, and free-flow with downstream propagating waves, and the transitions 
between congestion and free-flow. The scenario has a length of 3 hours and is shown for segment 3 in the Figures 3 
and 4 by the dashed lines on the right. 
 
To test the parameter tracking ability of the filters, the data was generated with the following time-varying 
parameters: 
 
• The free-flow speed vfree,k increases linearly from 119 km/h to 129 km/h, 
• The critical density _crit,k varies sinusoidally around 27.4 veh/km/lane with an amplitude of 1 veh/km/lane, 
• And ak, decreases linearly from 2 to 1.7. 
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These values used for the generation of the data are shown in Fig. 3. The remaining parameters are given in Table 
III. The measurement noise standard deviations were chosen to be in the range of 5–10% of the typical values of the 
output variables, for the traffic state variables in the range of 1–5%, and the standard deviations of the parameters 
were tuned by trial and error. Note that the parameter covariances were used in the filters only, since for the data 
generations the parameters were predefined. 
 

TABLE III 
THE PARAMETERS USED: 

 
Parametrs Specifications 

Cov{ (k)}= 1(veh/km/lane)2

Cov{ (k)}= 1(km/h)2

Cov{�vfree}= 10-2(km/h)2

Cov{��crit}= 10-3(veh/km/lane)2 
Cov{�a}= 10-4(-) 
Cov{  (k)}= 10 (km/h)2

Cov{ }= 100(veh/h)2

�= 15.84 (s), �= 40(km2/h),  = 5 
(veh/km/lane) 

 
To test the dependence of the state estimation performance on the parameters, the state estimator performance is 
compared for the case when the exact time-varying parameters are known and for the case when only a (constant) 
estimate of the parameters is available (which was taken to be the mean over the simulation period).  
 

V. RESULTS 
 
The results for the case when the speed and density are measured in all four segments are shown in Table IV. The 
performance of the EKF is comparable to that of the UKF (lower values indicate better performance). The errors of 
the joint configurations are significantly lower than those of the dual configuration. For other detector 
configurations, the results were similar (not shown here). These results are not in accordance with the suggestion in 
[2] that the dual filter should have better convergence properties.  
 
The reason for the worse performance of the dual filter could be the difference of a few orders of magnitude 
between the state covariances and the parameter covariances. Since the covariances of the states are much larger, the 
joint filter will in general adapt the state estimate more than the parameter estimate when a new measurement 
arrives. However, the dual filter will not balance the adaptation according to the covariances of the state and 
parameter estimates since the states are assumed to be given for the parameter estimator, and the parameters are 
given for the state estimator. See Figs. 3 and 4 for the estimated states and parameters by the joint and dual filters. 

 
TABLE IV 

THE PERFORMANCE OF THE EKF AND UKF FOR DIFFERENT FILTER 
TYPES WHEN ALL SEGMENTS ARE MEASURED. 

 
Filter
type 

Estimation 
type 

Jp Jv Jpar

EKF State 0.057 0.059 - 
UKF State 0.054 0.056 - 
EKF Parameter - - 0.027 
UKF Parameter - - 0.027 
EKF Dual 0.206 0.160 0.0233 
UKF Dual 0.156 0.140 0.0233 
EKF Joint 0.054 0.055 0.35 
UKF Joint 0.049 0.051 0.42 
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TABLE V 
THE PERFORMANCE OF THE EKF FOR THE STATE ESTIMATION PROBLEM 
KNOWN AND UNKNOWN TIME-VARYING PARAMETERS (ALL SEGMENTS 

ARE MEASURED). 
 

Time-varying
parameters 

Jp Jv

Known 0.052 0.053 
Unknown (average) 0.057 0.059 

 
In Table VI, the effect of different detector locations on the performance is shown. As can be expected the estimated 
state shows larger error when fewer detectors are used. However, the parameter estimation error did not vary 
significantly with the number of detectors, except when only speed or density was measured at only one location. In 
the other cases, the performances of the EKF and the UKF are comparable.  
 
The result for the state estimation with the EKF for the case when the time-varying parameters are exactly known, 
and the case when only the (constant) average is known, is shown in Table V. The small difference indicates that the 
state estimation filter is not very sensitive to parameter errors. This is in contrast with [6] where the result of the off-
line calibration was found to be sensitive to the model parameters. A possible reason for this is that the EKF re-
estimates the state based on the new measurements (including model error/state noise, which can compensate for the 
parameter errors), while off-line calibration does not take model errors into account; it only minimizes the 
measurement error. 

 
TABLE VI 

THE PERFORMANCE OF THE EKF AND UKF FOR DIFFERENT DETECTOR 
CONFIGURATIONS FOR JOINT ESTIMATION 

 
Filter type Flow loop 

locations 
Speed loop 
locations 

Jp Jv Jpar

EKF 1,2,3,4 1,2,3,4 0.054 0.055 0.035 
UKF 1,2,3,4 1,2,3,4 0.049 0.051 0.042 
EKF 1,2,3 1,2,3 0.071 0.080 0.034 
UKF 1,2,3 1,2,3 0.066 0.076 0.041 
EKF 2,3 2,3 0.112 0.101 0.039 
UKF 2,3 2,3 0.114 0.110 0.041 
EKF 3 3 0.156 0.152 0.044 
UKF 3 3 0.179 0.181 0.041 
EKF 3 - 0.855 0.632 0.133 
UKF 3 - 3.714 0.842 0.062 
EKF - 3 0.223 0.243 0.044 
UKF - 3 0.811 0.630 0.061 

 
In general, it can be expected that the performance of the UKF is better than that of the EKF, since it propagates the 
state noise more accurately. In the results shown here, this is only weakly confirmed: the performances are nearly 
equal and in some cases the performance of the UKF is slightly better. A result that is not shown in the tables here, 
is that the UKF is dependent on the design parameters of the algorithm, and a change to 	= 1 resulted in a slightly  
worse performance than that of the EKF. 
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Fig. 3. State and parameter estimation with the joint EKF, all segments 

are measured. 
 

 
Fig. 4. State and parameter estimation with the dual EKF, all segments 

are measured. 
 

VI. CONCLUSION 
 
Several filter configurations were investigated for freeway traffic state estimation, parameter estimation, and joint 
and dual estimation. The filters were tested with artificial data generated with the METANET traffic flow model. 
The main conclusions of the simulations are: 
• Although the unscented Kalman filter has advantages that it propagates the state noise distribution with higher 
precision, its performance was nearly equal (slightly better) to that of the extended Kalman filter. 
• The performance of the joint filter is better than that of the dual filter, because the joint filter takes into account the 
differences of the order of magnitude between the covariances of the states and the parameters. 
• Fewer detectors result in larger state estimation errors, but have no effect on the parameter estimation error. 
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