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Abstract -An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of anOldroyd-B, incompressible 
and electrically conducting fluid through a porous medium bounded within two infinite vertical parallel porous plates is 
carried out. The fluid is injected with constant velocity through the stationary porous plate and simultaneously sucked 
with same constant velocity through the other oscillating plate. The temperature of the stationary plate is also oscillating. 
The temperature difference of the two plates is assumed high enough to induce heat transfer due to radiation. The entire 
system rotatesabout the axis normal to the planes of the plates with uniform angular velocity �. A magnetic field of 
uniform strength is applied in the direction perpendicular to the plates. The induced magnetic field is neglected due to the 
assumption of small magnetic Reynolds number. Adopting complex variable notations, a closed form analytical solution 
of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in 
detail.For small andlarge rotations the dependence of the steady and unsteady resultant velocities and their 
phasedifferences on various parameters are discussed with the help of figures and tables. 

Key words -Oldroyd-B Fluid,Porous Medium,Injection/suction,Magnetohydrodynamic (MHD),Convective, Oscillating, 
Rotating, Radiation. 

I. INTRODUCTION 

The theory of non-Newtonian fluids has become a field of very active research for the last few decades as this class 
of fluids represents, mathematically, many industrially important fluids such as plastic films and artificial fibers in 
industry. Flows of non-Newtonian fluids have gained considerable attention of engineers and scientist in recent past 
due to their important applications in various branches of science and technology particularly in chemical and 
nuclear industries, material processing, geophysics, and bio-engineering. In view of these applications an extensive 
range of mathematical models such as the Rivlin-Ericksen second order modelOldroyd [1], Oldroyd modelRao[2], 
Johnson-Seagalman modelHayat et al.[3]have been developed to analyze the diverse hydrodynamic behavior of 
these non-Newtonian fluids. Different visco-elastic fluid models have been presented by many investigators for 
variety of geometries using various types of analytical and computational schemes. These fluid flows are 
encountered in numerous areas of petrochemical, biomedical and environmental engineering including 
polypropylene coalescence sinteringTichy[4], Vlastos [5] and Wouteret. al. [6].The flow of viscoelastic fluids 
through porous media has also attracted the attention of a large number of scholars owing to their application in the 
fields of extraction of energy from geothermal regions and in the flow of oil through porous rocks. Many common 
liquids such as certain paints, polymer solutions, some organic liquids and many new materials of industrial 
importance exhibit both viscous and elastic properties. The fluids with such characteristics are called viscoelastic 
fluids. The scientific treatment of the problem of irrigation, soil erosion etc. are present developments of porous 
media. Gupta and Sridhar [7] studied the viscoelstic effects in non-Newtonian flow through porous medium. 
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Petrov[8] investigated the development of the flow of viscous and viscoelastic media between two parallel plates. 
Rajgopal et al [9] analyzed oscillatory motion of an electrically conducting viscoelastic fluid over a stretching sheet 
in saturated porous medium with suction/blowing. 

Rajgopal[10] studied the unsteady unidirectional flows of a non-Newtonian fluid. Rajgopal and Gupta[11] obtained 
an exact solution for the flow of a non-Newtonian fluid past an infinite porous plate. Ariel [12] analyzed the flow of 
a viscoelastic fluid past a porous plate. Ariel [13] also obtained an exact solution of flow problems of a second grade 
fluid through two porous walls.Labropulu[14] obtained another exact solution of non-Newtonian fluid flows with 
prescribed vorticity. Pillai et al [15] studied the heat transfer in a viscoelastic boundary layer flow through a porous 
medium. Choudhury and Das[16] investigated magnetohydrodunamic boundary layer flow of non-Newtonian fluid 
past a flat plate. Metzner and White[17] investigated the flow behavior of viscoelastic fluid in the inlet region of a 
channel. Samria et al. [18] analyzed free convection flow of an elasto-viscous fluid past an infinite vertical plate.  

The study of flow in rotating porous media is motivated by its practical applications in geophysics and 
engineering. Among the applications of rotating flow in porous media to engineering disciplines, one can find the 
food processing industry, chemical process industry, centrifugation filtration processes and rotating machinery. The 
presence of magnetic field significantly affects the flow of electrically conducting fluid. The magnetic field effect on 
the non-Newtonian fluid flow has wide applications in chemical engineering, metallurgical engineering, and various 
industries. Researchers have considerable interest in the study of flow phenomenon between two parallel plates. 
Because of its occurrence in rheometric experiments to determine the constitutive properties of the fluid, in 
lubrication engineering, and in transportation and processing encountered in chemical engineering, the flow on non-
Newtonian visco-elastic fluid is worthwhile to investigate. The rotating flow of electrically conducting, 
incompressible, viscous and viscoelastic fluids has gained considerable attention because of its numerous 
applications in physics and engineering. A number of scholars  have shown their interest towards the application of 
visco-elastic fluid flows through various types of channel in the presence of magnetic field.In geophysics, it is 
applied to measure and study the positions and velocities with respect to a fixed frame of reference on the surface of 
earth, which rotate with respect to an inertial frame in the presence of its magnetic field. The subject of geophysical 
dynamics nowadays has become an important branch of fluid dynamics due to the increasing interest to study 
environment. In astrophysics, it is applied to study the stellar and solar structure, inter planetary and inter stellar 
matter, solar storms etc. In engineering, it finds its application in MHD generators, ion propulsion, MHD bearings, 
MHD pumps, MHD boundary layer control of re-entry vehicles etc. Several scholars have studied such flows 
because of their varied importance. Devnath[19] studied magnetohydrodynamic boundary layers in a rotating 
flow.Devika et al [20] analyzed theMHD oscillatory flow of a viscoelastic fluid in a porous channel with Chemical 
Reaction.Hossanien and Mansour [21]investigated unsteady magnetic flow through a porous medium between two 
infinite parallel plates.Puri[22] analyzed rotating flow on an elastic-viscous fluid on an oscillating plate. Puri and 
Kulshreshtha[23] investigated rotating flow of non-Newtonian fluids. Hayat et al [24] studied unsteady 
hydromagnetic rotating flow of a conducting second grade fluid.  Rahman and Sarkar[25] investigated the unsteady 
MHD flow of a viscoelastic Oldroyd fluid under time varying body forces through a rectangular channel. Attia and 
Abdeen[26] investigated unsteady Hartmann flow with heat transfer of  a viscoelastic fluid under exponential 
decaying pressure gradient.Singh and Mathew [27] studied the oscillatory hydromagnetic flow in a rotating 
horizontal porous channel.Singh [28] obtained an exact solution of MHD mixed convection periodic flow in a 
rotating vertical channel with heat radiation.Singh [29] studied viscoelastic mixed convection MHD oscillatory flow 
through a porous medium filled in a vertical channel.Hayat et al [30] have also studied hydromagneticCouette flow 
of an Oldroyd-B fluid in a rotating system. 

The objective of the present analysis is to study MHD oscillatory convection flow of an incompressible, 
electrically conducting and viscoelastic (Oldroyd-B) fluid in a vertical porouschannel. Constantinjection and suction 
is applied at the stationary and the oscillating infinite porous plates respectively. The entire system rotates about an 
axis perpendicular to the planes of the plates and a uniform magnetic field is also applied along this axis of rotation. 
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A general solution of the partial differential equations governing the flow problem is obtained and the effects of 
various flow parameters on the resultant velocity field and the resultant skin friction along with their phase angles 
are discussed in the last section of the paper with the help of figures and tables. 

 
II. BASIC EQUATIONS 

 Consider the flow of a viscoelastic(Oldroyd-B), incompressible and electrically conducting fluid filled in a 
vertical channel.In order to derive the basic equations for the problem under consideration following assumptions 
are made: 

(i) The two infinite vertical parallel plates of the channel are permeable and electrically non-conducting. 
(ii) The vertical channel is filled with a porous medium. 
(iii)The flow considered is fully developed, laminar and oscillatory. 
(iv)The fluid is viscoelastic (Oldroyd-B), incompressible and finitely conducting.  
(v) All fluid properties are assumed to be constant except that of the influence of density variation with 

temperature is considered only in the body force term. 
(vi)A magnetic field of uniform strength B0 is applied perpendicular to the plates of the channel. 
(vii) The magnetic Reynolds number is taken to be small enough so that the induced magnetic field is 

neglected. 
(viii) Hall effect, electrical and polarization effects are also neglected. 
(ix)The temperature of a plate is non-uniform and oscillates periodically with time. 
(x) The temperature difference of the two plates is also assumed to be high enough to induce heat transfer due 

to radiation. 
(xi)The fluid is assumed to be optically thin with relatively low density. 
(xii) The entire system (consisting of channel plates and the fluid) rotates about an axis perpendicular to the 

plates. 

Under these assumptions we write hydromagnetic governing equations of motion and continuity in a rotating frame 
of reference as: 

          (1)                        

  (2)

  .        

 (3)                 
  
In equation (2) the last term on the left hand side is the Coriolis force. On the right hand side of (2) the last term 

 accounts for the force due to buoyancy. The second last term is the Lorentz Force due to magnetic 
field Band is given by 

         (4) 

and the modified pressure , where R denotes the positionvector from the axis of rotation, 

 denotes the fluid pressure, J is the current density, and all other quantities have their usual meaning and have 
been defined from time to time in the text. 
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In the term third from last of equation (2), is the Cauchy stress tensor and the constitutive equation derived by 

Coleman and Noll [31] for an incompressible homogeneous fluid of second order is  

.              (5)      

Here  is the interdeterminate part of the stress due to constraint of incompressibility, ,  and  are the 

material constants describing viscosity, elasticity and cross-viscosity respectively. The kinematic  and  are the 

Rivelen Ericson constants defined as 

,  ,                where 

 denotes the gradient operator and d/dt the material time derivative. According to Markovitz and Coleman [32] the 

material constants ,  are taken as positive and  as negative. The modified pressure , 

where R denotes the position vector from the axis of rotation,  denotes the fluid pressure. 

III. FORMULATION OF THE PROBLEM 

We consider an unsteady flow of a viscoelastic incompressible and electrically conducting fluid bounded 
by two infinite electrically non-conducting vertical porous plates distance ‘d’ apart.A coordinate system is chosen 
such that the X*-axis is oriented upward along the stationary plate and Z*-axis taken perpendicular to the planes of 
the plates.A schematic diagram of the flow problem is shown in figure 1.The fluid is injected through the porous 
plate at  with constant velocity w0and simultaneous removedwith the same velocity w0 through the other 

oscillating porous plate at . The non-uniform temperature of the plate at  is assumed to be varying 

periodically with time. The temperature difference between the plates is high enough to induce the heat due to 
radiation. The Z*- axis is considered to be the axis of rotation about which the fluid and the plates are assumed to be 
rotating as a solid body with a constant angular velocity �*. A transverse magnetic field of uniform strength B (0, 0, 
B0) is also applied along the axis of rotation. All physical quantities depend on z* and t* only for this fully developed 
laminar flowproblem. The equation of continuity  gives on integration .Thenthe velocity may 
reasonably be assumed with its components along x*, y*, z* directions as V (u*, v*, w0). 
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         X* 
    

 
Figure 1.Physical configuration of the flow. 

 
Under the usual Boussinesq approximation MHD flow in the rotating channel is governed by the following 

equations:         
 

 
,           (5)   
           

 , 

 (6)           

 (7)  .        

 (8)  
where   is the density,  is the kinematic viscosity,  is viscoelasticity, p* is the modified pressure, t* is the time, 

 is the electric conductivity, B0 is the component of the applied magnetic field along the z*-axis, g is the 
acceleration due to gravity, k is the thermal conductivity, cp is the specific heat at constant pressure and the last term 
in equation (8) is the radiative heat flux. 

Following Cogley et al [33] it is assumed that the fluid is optically thin with a relatively low density and the 
heat flux due to radiation in equation (8) is given by 

.            (9)  

where  is the mean radiation absorption coefficient. After the substitution of equation (9) equation (8) becomes 

d�

Porous�Medium�

O�

B0

W0

W0
W0

W0�
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 .       (10)      

Equation (7) shows the constancy of the hydrodynamic pressure along the axis of rotation. 

The boundary conditions for the problem are 

,        (12)

     

(13)  where T0 is the temperature of the plate at ,Td is the mean temperature of the plate at  

and  is the frequency of oscillations. 

Eliminating the pressure gradient appearing in equations (5) and (6), we get 

,           (14)

 . 

 (15) 

 Introducing the following non-dimensional quantities:   

    

 (14)         into equations (14), (15) and (10), we get 

 , 

       (15) 

 ,  

 (16)    

 (17) where  

is the injection/suction parameter, 

   is the visco-elastic parameter,   is 

the rotation parameter,   is the Hartmann number,    

is the permeability of the porous medium,  

   is the Grashof number, 

is the Prandtl number, 
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is the radiation parameter. 

The boundary conditions in the dimensionless form become 

,          (18)  

      (19) 

IV. SOLUTION OF THE PROBLEM 
 
Now combining equations (15) and (16) into single equation by introducing a complex function of the form q = u + 
iv, we get  

, (21)  

with corresponding boundary conditions in complex form as 

,        (22) 

   (23) 

In view of theboundary conditions (22) and (23) that is, periodic variations of the platevelocity ( ) and the 

plate temperature ( ), the solution of the problem isassumed to be of the form 

, 

 (24) .   (25) 

Substituting  equations (24) and (25) into equations (17) and (21) andcomparing the harmonic and non harmonic 
terms,we get 

,       (26) 

,   (27) 

,    (28) 

,          (29) 

,        (30) 

,        (31) 

where . 
 
The transformed boundary conditions can be written as 

,      (32) 

  (33) 
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The solutions of the second order differential equations (29)to (31) under the boundary conditions (32) and (33) are 

 ,    

 (34) ,   

 (35) 

.       (36) 

 Before proceeding for the solutions of equations (26), (27) and (28), it is necessary to remark here that 
these are third order differential equations for non-zero �. But for � = 0 these equations reduce to classical case of 
viscous fluids. Mathematically and computationally, it is more challenging to analyze the flow of second grade 
fluids because of the peculiarity of the equations governing the fluid motion. The order of the differential equations 
characterizing the flow of second grade fluid is higher than the number boundary conditions available. This 
difficulty can be accentuated by the fact the viscoelastic parameter, , for a second grade fluid usually occurs in the 

coefficient of the highest derivative and can be resolved by seeking perturbation solution assuming the viscoelastic 
parameter to be small as is treated by Beard and Walters[34] considering the two-dimensional stagnation point flow 
of Walter’s B fluid. One may also refer to Hayat and Hutter[35] and Hayat et al [24]. In the present analysis also the 
difficulty is removed by assuming perturbation solution of the following form: 

,  (37) 

,   (38) 

,   (39) 

which is valid for small values of � only. Substituting these relations into equations (26), (27) and (28) and equating 
the coefficients of like powers of �. We obtain the following system of equations along with boundary conditions: 
System of order zero 

,   (40) 

,  (41) 

,  (42) 

with boundary conditions 
,    (43) 

.    (44) 

System of order one 
,    (45) 

,   (46) 

,   (47) 

with boundary conditions 
,    (48) 

.    (49) 
Zeroth-order solution 
System of zero-order equations describes the basic problem of viscous fluids. The solution of the this problem is 
obtained as 

,  (50) 

,  (51) 
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.  (52) 

First-order solution 

,  (53) 

 ,  (54) 

.  (55) 

 
 

  V. RESULTS AND DISCUSSION 
 The Problem of MHD oscillatory, viscoelstic, convective and radiative flow in a vertical porous channel is 
analyzed. The fluid is injected through the stationary porous plate and simultaneously removed with same velocity 
through the oscillating porous plate of the channel. The entire system (consisting of porous channel and the fluid) 
rotates about an axis perpendicular to the Plates. The approximate solutions for the velocity and the temperature 
fields are obtained analytically. The steady and unsteady resultant velocities and amplitudes of the shear stress along 
with their phase differences are shown with the help of graphs. To have better insight of the physical problem 
different curves are compared with the basic dotted curve II in all the figures. 
 Now for the resultant velocities and the shear stresses of the steady and unsteady flow, we write 

and         (56) 

.        (57) 
 
The solution (37) corresponds to the steady part which gives u0 as the primary and v0 as the secondary velocity 
components. The amplitude and the phase difference due tothese primary and secondary velocities for the steady 
flow are given by 

 and       (58) 

The resultant velocity for the steady part of the flow in a vertical porous channel is presented in 
Fig.2.The different curves in this figure represent the various sets of parameter valueslisted in table 1. Comparison 
of curves I and II reveal that the resultant R0increases with the increase of the injection/suction parameter �. It is 
very clear from this figure that R0increases with the increasing Grashof number Gr (curves II &III), the Hartmann 
number M (curves II & IV) and the Prandtl number Pr (curves II & V).The two valuesof the Prandtl number Pr as 
0.7 and 7.0 are chosen to represent air and waterrespectively. However, the increase of the permeability parameter K 
and radiation parameter N lead to a decrease in the resultant R0.The rotational effect of the flow is clearly visible 
with increasing rotation � of the channel. 
 The phase angle  of the steady resultant R0 is presented in Fig. 3. A significant decrease in the phase 
angle is noticed with the increase of the injection/suction parameter � (curves I & II), convection current Gr (II & 
III), Hartmann number M (curves II & IV) and the Prandtl number Pr (curves II & VI). The phase angle decreases 
with the increase of the permeability parameter K (curves II & V) and the radiation parameter N (curves II & VII). 
A phase shift from the phase lead to phase lag is observed from this figure but this phase shift for the larger rotation 
of the channel is very sharp. 
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Figure 2.Resultant velocity R0 due to steady components u0 and v0. 
 
 

 

Figure 3. Phase angle due to u0 and v0. 
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The amplitude and the phase difference of the steady shear stress at the stationary plate for the steady flow 
can be obtained as 

 and  ,  (59) 

where 

  

  

  .   (60) 

Here  and  are, respectively the shear stresses at the stationary plate due to the primary and secondary 

velocity components. The numerical values of the amplitude  and the phase difference of the steady shear 

stress at the stationary plate (�=0) for the steady flow are presented in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Table�1.Values�of�parameters�representing�
different�curves�in�figures2�&�3.�
�����������Gr����M����K������Pr���N���������Curves�
5�����0.5���5�����2���0.2���0.7���1�������0.05�������I�
5�����1.5���5�����2���0.2���0.7���1�������0.05�������II�
5�����1.5���10���2���0.2���0.7���1�������0.05�������III�
5�����1.5���5�����4���0.2���0.7���1�������0.05�������IV�
5�����1.5���5�����2���5.0���0.7���1�������0.05�������V�
5�����1.5���5�����2���0.2���7.0���1�������0.05�������VI�
5�����1.5���5�����2���0.2���0.7���5�������0.05�������VII�
25���1.5���5����2���0.2���0.7���1�������0.1�����������VIII�
50���1.5���5����2���0.2���0.7���1�������0.1�����������IX

Table�2.�Amplitude� �and�the�phase�difference� �of�
the�steady�shear�stress�at�the�stationary�plate�(�=0).�
�������������Gr���M����K������Pr����N����������������� �
���5���0.5���5�����2����0.2���0.7���1����0.05���3.6251���0.40336�
���5���1.5���5�����2����0.2���0.7���1����0.05���4.7716���0.20259�
���5���1.5���10���2����0.2���0.7���1����0.05���6.7000���0.06916�
���5���1.5���5�����4����0.2���0.7���1����0.05���5.7413���0.13910�
���5���1.5���5�����2����5.0���0.7���1����0.05���4.3545���0.24595�
���5���1.5���5�����2����0.2���7.0���1����0.05���5.0986���0.14503�
���5���1.5���5�����2����0.2���0.7���5����0.05���4.4047���0.31005�
�25���1.5���5�����2����0.2���0.7���1����0.05���7.0240���0.57942�
�50���1.5���5�����2����0.2���0.7���1����0.05���9.6764���0.68881�
�75���1.5���5�����2����0.2���0.7���1����0.05���11.842���0.72727�
100��1.5���5�����2����0.2���0.7���1����0.05���13.700���0.74623�
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It is noticed from the numerical values for   and in table 2 that the amplitude  increases with the increase of 

the injection/suction parameter �, Grashof number Gr, Hartmann number M, Prandtl number Pr and increasing 
rotation � of the channel. However, amplitude decreases with the increase of permeability of the porous medium K 
and the radiation parameter N. Similarly, from the values for it is clear that the phase angledecreases with the 
increase of theinjection/suction parameter �, Grashof number Gr, Hartmann number M and the Prandtl number Pr. 
An increase in the phase angle is also observed due to the increase of the permeability of the porous mediumK and 
radiation parameter N. 
 Equations (38) and (39) with the help of equations (51), (52), (54) and (55) together give the unsteady part 
of the flow. The unsteady primary and secondary velocity components u1(�) and v1(�), respectively for the 
fluctuating flow can be obtained as 
 ,  (61) 

 . (62) 

The resultant velocity or the amplitude and the phase difference of the unsteady flow are given by 

 and  .   (63) 

 The resultant velocity R1 for unsteady part is presented in Figure 4. The curves in the figure represent 
various sets of parameter values listed in table 3. Different curves are compared with the basic colored curve II. It is 
observed from this figure that the unsteady resultant R1 decreases consistently with the increase of radiation 
parameter N (curves II & VII) and the frequency of oscillation � (curves II & VIII). The figure also shows that the 
resultant increases over the entire width of the channel with the increase of the injection/suction parameter � (curves 
II & I), Grashof number Gr (curves II & III) and Prandtl number Pr (curves II & VI). It is noticed that with the 
increasing rotation of the channel the unsteady resultant near the stationary plate increases first then decreases there 
after (curves II & IX, X). The figure also reveals that with the increase of the viscoelasticity of the fluid velocity 
decreases near the stationary plate and increases slightly thereafter (curves II & XI).  

 
Figure 4.Resultant velocity  due to u1 and v1. 
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Figure 5. Phase angle  due to u1 and v1. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The phase difference  for the unsteady part of the flow is presented in figure 5. In this figure the 
comparison of the curves with the basic curve II reveal that the phase difference increases with the increase of 
permeability K of the porous medium (curves II & V), the radiation parameter N (curves II & VII) and the frequency 
of oscillations � (curves II & VIII). However, for the increase of the rest of the parameters like the Grashof number 
Gr (curves II & III), Hartmann number M (curves II & IV), Prandtl number Pr (curves II & VI), rotation parameter 
� (curves II & IX, X) and the viscoelastic parameter � (curves II & XI). The phase lead near the stationary plate 
shifts to phase lag near the oscillating plate. 
 For the unsteady part of the flow, the amplitude and the phase difference of sheer stresses at the stationary 
plate (� = 0) can be obtained as 

 ,  ,  (64) 

Table�3.Values�of�parameters�representing�
different�curves�in�figure�4�&�5.�
�����������Gr����M����K������Pr���N����������Curves�
5�����0.5���5�����2���0.2���0.7���1���5����0.05�������I�
5�����1.5���5�����2���0.2���0.7���1���5����0.05�������II�
5�����1.5���10���2���0.2���0.7���1���5����0.05�������III�
5�����1.5���5�����4���0.2���0.7���1���5����0.05�������IV�
5�����1.5���5�����2���5.0���0.7���1���5����0.05�������V�
5�����1.5���5�����2���0.2���7.0���1���5����0.05�������VI�
5�����1.5���5�����2���0.2���0.7���5���5����0.05�������VII�
5�����1.5���5�����2���0.2���0.7���1���10���0.05������VIII�
25���1.5���5����2���0.2���0.7���1����5����0.05��������IX�
80���1.5���5����2���0.2���0.7���1����5����0.05��������X�
5�����1.5���5����2���0.2���0.7���1����5����0.1����������XI�

I

XI
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where  

 

.  (65) 

 The unsteady shear stress amplitude is shown in figure 6. The figure clearly shows that the amplitude 
increases with the increase of Grashof number Gr, Hartmann number M, Prandtl number Pr, frequency of 
oscillations �, injection/suction parameter �, rotation � of the channel and the viscoelastic parameter �. However, 
the amplitude decreases with the increase of permeability of the porous medium K and the radiation parameter N. 

 The phase difference  of the unsteady shear stress is presented in figure 7. In order to know the variation 

in the phase difference due to the increase of different flow parameters all curves are compared with the dotted curve 
II. The phase increase is noticed with the increase of permeability of the porous medium K (curves II & V), 
radiation parameter N(curves II & VII) and rotation parameter � (curves II & IX, X). But the increase of 
injection/suction parameter � (curves II & I), Grashof number Gr(curves II & III), Hartmann number M(curves II & 
IV), Prandtl number Pr(curves II & VI) and viscoelstic parameter �(curves II & XI). It is evident that there remains 
phase lead by and large. 

 

Figure 6.Amplitude of unsteady shear stress at . 
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Figure 7.The phase difference  of unsteady shear stress for . 
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Table�4.Values�of�parameters�representing�
different�curves�in�figure�6�&�7.�
�����������Gr����M����K������Pr���N�������Curves�
5�����0.5���5�����2���0.2���0.7���1�����0.05�������I�
5�����1.5���5�����2���0.2���0.7���1�����0.05�������II�
5�����1.5���10���2���0.2���0.7���1�����0.05�������III�
5�����1.5���5�����4���0.2���0.7���1�����0.05�������IV�
5�����1.5���5�����2���5.0���0.7���1�����0.05�������V�
5�����1.5���5�����2���0.2���7.0���1�����0.05�������VI�
5�����1.5���5�����2���0.2���0.7���5�����0.05�������VII�
5�����1.5���5�����2���0.2���0.7���1�����0.05������VIII�
25���1.5���5����2���0.2���0.7���1������0.05��������IX�
80���1.5���5����2���0.2���0.7���1������0.05��������X�
5�����1.5���5����2���0.2���0.7���1������0.1����������XI�
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