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Abstract: Columns are an important structural component in any given framed structure, and contribute substantially 
towards its total cost. The idea of column optimization therefore plays an important role in bringing down the overall cost 
of structure. The study presents one of the direct search methods - Complex Iterative Method - for minimum cost design 
of reinforced concrete columns. Cost of an RCC column constitutes the cost of concrete as well as steel, which are function 
of its cross-sectional dimensions and corresponding steel area. In the current study only two independent design 
variables, namely ratio of depth of neutral axis to depth of column ‘k’ and percentage area of longitudinal reinforcement 
‘p’ have been considered. Remaining design variables were made dependent on these two variables. Complex Iterative 
Method, being a gradient free method was adopted to test its efficiency. Various columns were considered for design with 
encouraging results. The paper illustrates application of the method with an example problem. 
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I. INTRODUCTION 

The aim of devising better design solutions while satisfying safety and performance constraints at least cost, is not a 
new one. From time immemorial an engineer has investigated several alternatives and chosen the best among these. 
A design process has always been a process of choice in which the designer’s intuition and experience played an 
important role. But the cost and social importance of structures built nowadays has increased so much that it has 
become impossible to rely exclusively on the intuition and experience of engineers. The need to create objective 
methods of effective optimum design has been the primary cause of the rapid development of structural optimization 
techniques (Majid, 1974). Bringing optimization techniques openly and consistently into design practice makes it 
possible for a designer to produce optimal structures.  

Columns are an important structural component in any given framed structure, and contribute substantially towards 
its total cost. The concept of column optimization thus plays a significant role in reducing the overall cost of 
structure. This paper presents a simple and easy to apply technique for obtaining optimum column design 
parameters. 

II. FORMULATION OF OPTIMIZATION PROBLEM 

The cost of a reinforced concrete column consists of the cost of concrete and steel. This can be obtained using the 
following relationship: 

 ccstst VCVCC                                                    (1) 

where   C  = total cost of column 

  stC   = cost of steel per unit volume of steel 

  stV   = volume of steel in the column 

  cC   = cost of concrete (including formwork) per unit volume of concrete 

  cV   = volume of concrete in the column 

Dividing Eq. 1 by cC , we get 
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Putting stGc VVV  , where GV = gross volume of column Eq. 2 becomes 
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Taking objective function 
cC

C
Z  and cost ratio

c
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C
 , Eq. 3 becomes 

  Gst VV)1(Z         (4) 

Since cC  is a constant parameter for a given place, the objective function 
cC

C
Z  represents total cost of column 

which we need to minimize.  

Following constraints (IS 456: 2000) were considered while formulating the optimization problem: 

i) Constraints for axial load capacity and moment capacity of the column 
ii) Constraints for minimum and maximum longitudinal reinforcement in the column 
iii) Constraint for minimum number of longitudinal bars 
iv) Constraint for maximum peripheral distance between longitudinal bars 
v) Constraint for minimum and maximum width and maximum depth of column 

Without violating any of the constraints, column optimization problem consists in determination of depth CD , 

width Cb , percentage area of longitudinal reinforcement ‘p’ and lateral tie spacing Cs  such that the cost of column 

is minimized. Mathematically, this optimization problem can be stated as 

Gst VV)1(ZMinimize         
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III. METHOD OF SOLUTION 

The optimization problem was solved using Complex Iterative Method. The method essentially consisted in 
evaluating the objective function at r (≥ s+1, where s = number of independent design variables) feasible vertices of 
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a complex (closed figure) and iteratively moving towards the optimum point by successive modifications. In each 
step the vertex XL which yielded the largest value of objective function (worst vertex) was replaced by a new vertex 
XN along the line joining the worst vertex and centroid of the remaining vertices. It was importantly assured that the 
new vertex did not violate any of the constraints and gave a smaller objective function value than the worst vertex. 
The new vertex was obtained as 
 

  )XX(XX LOON        (13) 

where β  > 0  

 OX   = centroid of all vertices except XL 

LX   = worst vertex 

 

When the reflected point NX  violated any of the constraints, it was moved half way towards the centroid by 

reducing β-value by half, until it became feasible. In this way, the complex was rolled over and over towards the 
minimum, remaining within the feasible space. The process was stopped when the deviation of function value at the 
vertices from the centroid became sufficiently small (β < 0.001). A graphical representation of the method is shown 
in Figure 1.  

In the present study, value of s (number of independent design variables) was taken as two. Ratio of depth of neutral 
axis to depth of column ‘k’ and percentage area of longitudinal reinforcement ‘p’ were taken as independent design 

variables. Remaining design variables like cross-sectional dimensions CD  and Cb  were obtained from these two 

values using their relationship with each other (Eq. 5 and Eq. 6). Number of longitudinal steel bars in the column 
was taken as 16; equally divided on four sides.  
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Figure 1. Graphical representation of “Complex Iterative Method” as applied to column optimization  

  

IV. SELECTION OF INITIAL POINTS AND OTHER PARAMETERS 

The number of vertices (r) in the complex was taken as 3, i.e. equal to s+1 (s =2). Thus 3 feasible starting designs 
required to initiate the optimization process were selected by considering conventional column design corresponding 
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to 3 different values of percentage of longitudinal steel, namely 2.1, 2.5 and 3.0 (lying within the permissible range 
of 0.8 to 4.0). Certain other parameters like cost ratio (α), grades of concrete and steel (fck and fy), column height (h) 
and column loads were given at the beginning. 

V. EXAMPLE 

The given set of loads for the column was taken as:  Axial load = 1011 kN and Moment = 137 kN-m. Column height 
was 3.5 m. Grades of concrete and steel were taken as M30 and Fe415 respectively. The cost ratio was taken as 85. 
The optimum design parameters viz. percentage of longitudinal steel, cross-sectional dimensions and spacing of 
lateral ties, were determined and are presented in Table 1. Number of iterative cycles required for optimization has 
also been indicated in the same table. Percentage of longitudinal steel decreased from 2.0 % to 0.8 % and objective 
function (Z) reduced from 1.67338 to 1.06969, indicating a substantial optimization level of 36.1 %.  

 

VI. CONCLUSIONS 

1. The optimization results obtained by the use of Complex Iterative Method (Direct Search Method) for design of 
reinforced concrete columns were very encouraging and accordingly its suitability stands proved. 
2 Although both reduction in steel area and cross-sectional area of column contributes towards optimization of 
reinforced concrete columns, the reduction in steel area plays a greater role in optimization as compared to reduction 
in cross-sectional area of columns. 
 

Table-1 Comparison of conventional and optimum design values 

 

Parameter Conventional design Optimum design 

Longitudinal steel (p) 2. 0 % 0.8 % 

Depth (DC)  480 mm 900 mm 

Width (bC)  310 mm 150 mm 

Tie spacing (8 mm dia. bar) 192 mm 150 mm 

Objective function (Z) 1.67338 1.06969 

Number of iterative cycles - 48 

 

VII. LIST OF SYMBOLS 

istA   = area of reinforcement in the ith row 

4321 BBBB b,b,b,b  = width of four beams, namely 4321 BandB,B,B  that are attached to the given column jC  

Cb   = width of column 

jCb  = width of column jC   

1jCb


  = width of column 1jC  , which lies immediately beneath column jC  

pd   = maximum peripheral distance among longitudinal bars of the column 

CD   = depth of column 

jCD   = depth of column jC  

1jCD


  = depth of column 1jC  , which lies immediately beneath column jC  
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cif   = stress in concrete at the level of ith row of reinforcement 

ckf   = Characteristic strength of concrete 

sif   = stress in the ith row of reinforcement, compression being positive and tension being negative   

CDk   = depth of neutral axis from extreme compression fiber 

M  = actual value of bending moment as applied on the column 
n  = number of rows of reinforcement 
p  = percentage area of longitudinal reinforcement 

ip   = percentage area of steel in the ith row of reinforcement 









CC

st
i Db

A100
p i  

P  = actual value of axial load as applied on the column 

iy   = distance of the ith row of reinforcement steel, measured from the centroid of the section. It is positive 

towards the highly compressed edge and negative towards the least compressed edge. 
  = diameter of longitudinal bar 

 

REFERENCES 

[1] M. J. Box, “A new method of constrained optimization and comparison with other methods”, Comput. J., 1965, Vol 8, pp. 42-52. 
[2] A. M. Brandt, W. Dzieniszewski, S. Jendo, W. Marks, S. Owczarek and Z. Wasiutynski, “Criteria and methods of structural optimization”, 

Polish Scientific Publishers, Warszawa, 1986. 
[3] C. Camp, S. Pezeshk and G. Cao, “Optimization of two dimensional structures”, J of Structural Engineering ASCE, 1998, 124(5), pp. 551-

559. 
[4] IS 456-2000 Indian standard plain and reinforced concrete – code of practice (fourth revision) Bureau of Indian Standards, New Delhi. 
[5] U. Kirsch, “Multilevel optimal design of reinforced concrete structures”, Engineering Optimization, 1983, 6(4), pp. 207-212. 
[6] K. I. Majid, “Optimum design of structures”, Newnes-Butterworths, London, 1974. 
[7] H. Moharrami, and D. E. Grierson, “Computer automated design of reinforced concrete frameworks”, J of Structural Engineering ASCE, 

1993, 119(7), pp. 2036-2058. 
[8] C. Lee, and J. Ahn, “Flexural design of reinforced concrete frames by genetic algorithm”, Journal of Structural Engineering, ASCE, 2003, 

129(6), pp. 762-774. 
[9] C. S. Reddy, “Basic structural analysis”, Tata McGraw Hill, New Delhi, 1988. 
[10] J. Singh and V. R. Sharma, “Optimal beam design using Complex Method”, Journal of Institution of Engineers (India), 2009, Vol 90, pp. 

33-35.  
[11] E. I. Tabak and P. M. Wright, “Optimality criteria method for building frames”, J of Structural Engineering ASCE, 1981, 107(7), pp. 1327-

1342. 

International Journal of Innovations in Engineering and Technology (IJIET)

Volume 5 Issue 1 February 2015 369 ISSN: 2319 – 1058




