Effect on Material Removal Rate (MRR) Of Hot Work Steel AISI H11 Material during Grinding With Silicon Carbide Wheel under Different Environmental Condition Using Taguchi Method

Sunil Kumar

M.Tech Scholar, Department of Mechanical Engineering DAV Institute of Engineering & Technology, Jalandhar, Punjab, India

Dr. Sanjeev Saini

Department of Mechanical Engineering DAV Institute of Engineering & Technology, Jalandhar, Punjab, India

Dr. Balkar Singh
Director Colleges

Punjab Technical University, Kapurthala, Punjab, India

Abstract: The process in which the abrasive grits of grinding wheel through their shearing and ploughing action, remove the material in the form of micro sized chips is called 'Grinding'. Thus, grinding is a multi-tooth metal cutting operation. This paper investigates, under different working conditions (dry, wet cooling and compressed gas) and process parameter (feed rate, depth of cut and wheel speed), the material removal behavior of AISI H11 hot work steel. For the experimentation, Silicon Carbide grinding wheel was used for the cutting processes. It was experimentally revealed that the compressed gas environment condition has remarkable influence on MRR with increase in depth of cut and decrease in feed rate.

Keywords: Material Removal Rate, Grinding, Feed rate, Depth of cut, Environment.

I. INTRODUCTION

For the conversion of raw material into usable final product, various machining and manufacturing processes like drilling, milling, grinding and turning are employed. Out of these processes, most are carried out to give new shape to the material either by changing their state or by deforming them. Abrasive machining is the most preferred method employed to produce a part of a material which is either hard or brittle, with high dimensional accuracy. Thus, one such important and useful technique of abrasive machining to remove metal at fast rates with high level finish is 'Grinding'. Output quality is of utmost importance and this requirement of high quality increases the production cost, leaving minimal scope to commit mistakes. Thus, to reduce the production cost and to achieve the high quality of product, great deal of planning must be done to optimize process parameters which are generally known through research and development. Grinding is basically a surface generation process involving removal of surface material, thus giving the desired shape to the product. In grinding, a rotating wheel is brought in contact with work surface. The abrasive grains of the grinding wheel which are held together by binders act as cutting tools which remove the tiny redundant chips from the work material. With time, these abrasive grains wear down due to added resistance leading to the fracture of grains, thus weakening their bond. The dull pieces are gradually removed revealing the newer grains which carry out further cutting.

Grinding has been the object of technical research for some decades now. Kwak et. al. [1] presented the experimental setup to analyze effectively the grinding power and the surface roughness of the ground workpiece in the external cylindrical grinding of hardened SCM440 steel using the response surface method. The experimental results show the mathematical model. From adding simply material removal rate to the contour plot of these mathematical models, it was seen that useful grinding conditions for industrial application could be easily determined. Xu et. al. [2] has investigated the experimental procedure for vitreous bond silicon carbide wheel for grinding of silicon nitride. The result shows that silicon carbide grinding wheel can be used for precision form grinding of silicon nitride to achieve good surface integrity. Monici et. al. [3] have explained the concept of optimized cutting fluid application method to improve the efficiency of the process and show that combine use of neat oil and CBN wheel give better efficiency than aluminium oxide grinding wheel. Badger [4] has researched on the factor affecting the grindability of high speed steel(HSS) by measuring G-ratio and power consumption in surface grinding with an aluminium oxide wheel. It was found that dominant factor affecting grindability in HSS is the size of the vanadium carbides. Guo et. al. [5] have studied the effect of both wheel wear and process parameters on the grinding performance of plated CBN wheel on a nickel alloy to obtain particular model. Liu et. al. [6] have researched the stringent requirements for grinding wheels include low damage on ground surfaces, self-dressing ability, consistent performance, long wheel lives and low prices to manufacture the silicon wafers. Anderson et. al. [7] have developed a model to predict the contact temperature with using infrared data. The infrared data showed that with increasing depth of cut numerical models were more accurate than analytical model. The obtained results suggest that use of analytical contact zone thermal model should be limited to shallow grinding while numerical models are more suited to larger depth of cut and result also showed higher Peclet number in grinding results in lower overall workpiece temperature. Atzeni [8] et. al. have developed experimental setup to test the influence of cutting speed and feed per gain on surface roughness after grinding cycle. The observed data have been statistically processed to obtain relationship between among roughness and kinematic parameters. The obtained model shows that the roughness is mainly influenced by the feed per grain and to a lesser degree by the cutting speed. Aurich [9] et. al. have found experimental investigation of dry grinding operations of hardened heat preheated steel and then obtain data compared with wet grinding operation which is taken as reference prototype. Tawakoli et.al. [10] have investigated the effect of ultrasonic vibration on dry grinding and obtained result show that the application of ultrasonic vibration can eliminate the thermal damage on workpiece, increase the G-ratio and decrease the grinding force considerably. Nguyen [11] have investigated the performance of new segmented grinding wheel system and observed that segmented grinding wheel gives better surface integrity with minimum use of coolant as compared to standard wheel. Brinksmeier [12] et. al. have investigated elastic bonded wheels for a grind-strengthening and super finished surface in a single step. Further, to achieve a high mechanical impact and to minimize the thermal effect of grinding process require a low cutting speed and showed that if chip thickness is constant, the chip formation mechanism shifts towards micro-ploughing and thus additionally increases the specific grinding energy. Fathallah [13] et. al. have investigated for better surface integrity of AISI D2 steel by using sol-gel grinding wheel and cooling by liquid nitrogen comparatively with conditions using aluminium oxide and cooling with oil-based. Ronald [14] et. al. have studied on the influence of grinding wheel bond material on the grindability of metal matrix composites. The obtained result showed that resin bonded wheel performed better than electroplated wheel. Herman [15] et. al. have researched radial wear of super hard grinding wheels in the process of internal grinding of bearing rings. The new developed grinding wheel is designed for bonding the abrasive grains of sub microcrystalline boron nitride using a glass-ceramic bond. This grinding wheel is compared to CBN grinding wheels composed from ceramic bonding system for roughness profile on the wheel working surface and the wear resistance. Vijayender singh [16] et. al. have developed experimental setup for grinding the composite ceramic material with cryogenic coolant. The observed result showed that cryogenic coolant (ecofriendly) in grinding gives better surface quality of material.

Ramdatti [17] et. al. have applied the Taguchi techniques to obtain an optimal setting of grinding process parameters resulting in an optimal value of material removal rate and surface roughness when machining EN-8, EN-39 and cast iron. Demirci [18] et. al. have investigated the influence of nature of bond on surface edge finishing. Experimental results showed that the grinding forces vary sensitively with bond type and wheel velocity. Using diamond grain's

wheel, it was found that roughness level obtained with metallic bond is lower than that obtained with resin bond. Using a resin-bonded wheel, two mechanisms of material removal were revealed according to grain's type. (i) A partial ductile regime, i.e., ductile streaks and brittle fracture, obtained with diamond grains, and (ii) a fully ductile regime obtained with SiC grains. It was found that ground surface obtained using SiC grains' wheel has a better roughness than that obtained using diamond grains wheel. Besides, SiC grains seem to lead to more marked streaks and form defects. Demir [19] et. al. investigated influences of grain size and grinding parameters on surface roughness and grinding forces. The results showed that grain size significantly affected the grinding forces and surface roughness values. Increasing grain size and depth of cut increased the grinding forces and surface roughness values. Pil-Ho [20] et. al. have researched grinding process for surface roughness, grinding force and tool wear. It was observed that at low air temperature decrease the magnitude of grinding force and tool wear significantly, which could result in loner tool life. Mane [21] et. al. have developed experimental setup to study for surface finish enhancement of grinding process using compressed air. From developed experimental study it is observed that, the use of air helps to improve the surface finish of machined surface. Kadirgama [22] et.al. have discussed the optimization of cylindrical grinding when grinding carbon steel (AISI 1042) and effect of three variables (work speed, diameter of workpiece and depth of cut) towards surface roughness with aluminium oxide as grinding wheel. It was found that work speed is the most dominant factors on the Ra, followed by the diameter of workpiece and depth of cut respectively.

Ondrej Jusko[23] has investigated that least appropriate material for grinding wheels for cutting 14109.6 bearing steel is CBN with Aluminium oxide grains; Abral and SG grinding wheels are more suitable. A comparison of the two innovative abrasive materials shows that the performance of abral is slightly superior. Deepak pal [24] et. al. applied Taguchi parametric optimization technique to study the optimization of grinding parameters for minimum surface roughness. It was observed that surface roughness decreases as material hardness increases. It also decreases with increase in speed and changing grain size from G46 to G60, but increases changed to G80. Manimaran [25] et. al. have researched the experiment on the grinding of AISI 316 stainless steel under dry, wet and cryogenic cooling with Alumina(SG) grinding wheel. It has been concluded that with increasing depth of cut under cryogenic cooling, the surface roughness was decreasing as compared to dry and wet cooling. Grinding force and grinding zone heat temperature also obtained less under cryogenic cooling mode. Deepak Kumar [26] et. al. have researched the experiment on the grinding of AISI H11 material under dry, wet and gas conditions with Aluminum oxide grinding wheel for the MRR and surface roughness. It has been concluded that for higher material removal rate it was observed that compressed gas environment provide better cutting action of machining for higher MRR than wet and dry environment, when grinding AISI H11 hot work tool steel under the same working parameters.

II. EXPERIMENTAL PROCEDURES

The H-11 hot work steel plate blank has been heated to a temperature of 1030° C with half an hour soak time followed by quenching in a 500° C hot salt bath. It was then tempered in two cycles with maximum temperature of 450° C and 2 hours of soak time to obtain a final hardness of 48 HRC. Hot work AISI H11 steel have been chosen because of high hardness, excellent wear resistance, hot toughness and good thermal shock resistance properties and have wide application in die and hot-work forging, extrusion, helicopter rotor blades and shafts. The chemical composition of H11 is given in Table 1. Table 1 Chemical composition of AISI H11 steel (wt %)

Constituent	С	Si	Mn	P	S	Cr	Мо	V
Composition (In %)	0.345	0.925	0.397	0.0110	0.0257	5.12	1.29	0.591

The same Silicon carbide grinding wheel was used throughout the work. Its specification was "GC 60 L5 V34" and it was manufactured by SUN AB company. The wheel dimensions were 200 x 13 x 31.75 mm. The grinding experiments were conducted on AISI H11 hot work tool steel under the three different environments of dry, wet and compressed gas.

In gas environment, the compressed Nitrogen gas supplied at the grinding zone at an appropriate distance of 60 mm approximately from the cutting zone. The pressure of the compressed gas delivered to the cutting zone is maintained to fix at 5 bars in all gases environmental experiments. And, in wet grinding cooling consists of 30% coolant oil in water, applied directly at the inter-face of grinding wheel—work material at 6.50/min. For dry grinding there is no coolant is used. The work piece material, H-11 hot die steel with 304 mm \times 110 mm \times 24 mm size was used and the cuts were made widthwise. During the experiments, cuts were made of 110mm length.

The schematic diagram for experimental setup is shown below in figure I. A digital weighing machine was used to measure the weight of work piece before and after each cut of grinding. To investigate the parameters of grinding, In this experimental procedure 27 Nos. of experiments by combining most robust set of different four parameters each having three levels. The different sets of combinations are obtained by as per Taguchi's L27 orthogonal array from Minitab software. The combinations of parameters with different levels are given below in table II.

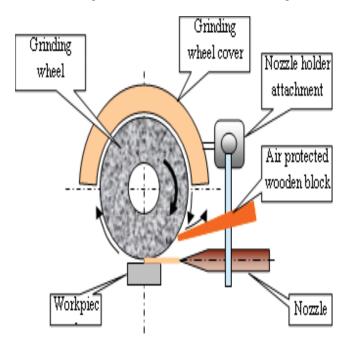


Figure I: Schematic arrangement for experimental setup

Table II: Process parameters with their values at 3 levels.

Parameters designations	Process parameters	Level-1	Level-2	Level-3
A	Environment	Dry	Wet	Gas
В	Wheel speed (rpm)	1000	1500	2000
С	Feed Rate (mm/min)	10	15	20
D	Depth of cut (mm)	0.05	0.10	0.15

As mentioned in table III, in this experimental setup total 27 Nos. of experiments have been performed on surface grinding machine. During each experiment the various parameters and its level combination are obtained as per Taguchi's L27 orthogonal array. The various levels of parameters are combined during every experiment are shown below table III.

Table II: No. of experiments (Taguchi L27 (34) orthogonal array)

Exp. No.	A:Environment	B:Wheelspeed (rpm)	C:Feedrate (mm/min)	D: Depth of cut (mm)	MDD (am/min)
1	DRY	1000	10	0.05	MRR(gm/min) 0.110
2	DRY	1000	15	0.03	0.110
3		1000	20	0.15	0.271
	DRY				
4	DRY	1500	10	0.10	0.410
5	DRY	1500	15	0.15	0.302
6	DRY	1500	20	0.05	0.110
7	DRY	2000	10	0.15	0.48
8	DRY	2000	15	0.05	0.095
9	DRY	2000	20	0.10	0.16
10	WET	1000	10	0.05	0.09
11	WET	1000	15	0.10	0.39
12	WET	1000	20	0.15	0.288
13	WET	1500	10	0.10	0.425
14	WET	1500	15	0.15	0.302
15	WET	1500	20	0.05	0.125
16	WET	2000	10	0.15	0.59
17	WET	2000	15	0.05	0.112
18	WET	2000	20	0.10	0.195
19	GAS	1000	10	0.05	0.102
20	GAS	1000	15	0.10	0.48
21	GAS	1000	20	0.15	0.29
22	GAS	1500	10	0.10	0.555
23	GAS	1500	15	0.15	0.38
24	GAS	1500	20	0.05	0.098
25	GAS	2000	10	0.15	0.798
26	GAS	2000	15	0.05	0.11
27	GAS	2000	20	0.10	0.268

III. RESULTS AND DISCUSSIONS

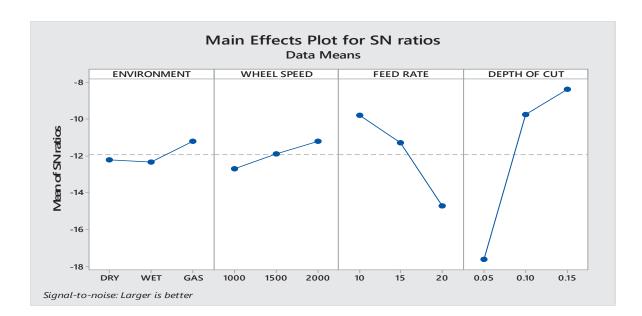
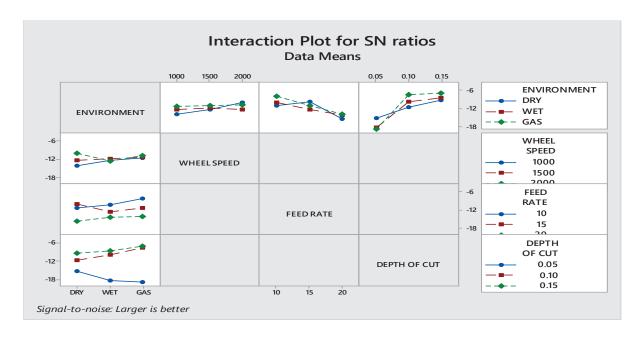



Figure II: Main Effect Plot of SN Ratio for MRR

Figure III: Interaction plot of SN Ratio for MRR (Larger is better)

The input parameters like feed rate (FR), depth of cut (DOC), wheel speed (WS) and environment of work interface zone have considerable effect on material removal rate.

Table IV and Figure II demonstrate the factor effect on material removal rate. The higher signal to noise ratio, the more favorable is the effect of the input variable on the output. The graph shows that, the optimum value levels for higher material removal rate are at a feed rate 10 mm/min, depth of cut 0.15 mm and grinding wheel speed

of 2000 rpm in case of compressed gas environment. From response table V for signal to noise, it can be seen that the most influencing parameter to material removal rate for AISI H11 is depth of cut (DOC) then workpiece feed rate then followed by compressed gas environment and grinding wheel speed (WS). The fig. IV (a) also shows that increase in wheel speed and depth of cut result in increase in material removal rate. fig. IV (b) shows that with increase in feed rate there is decrease in MRR Fig. IV(c) shows that compressed gas environment is more significant for MRR than wet and dry environment. And fig. IV (d) also shows that increase in depth of cut result in increase in material removal rate.

Figure IV: Variations in the material removal rate with (a) Wheel speed (b) Feed Rate (c) Environment i.e. dry, wet cooling and compressed gas (d) Depth of cut

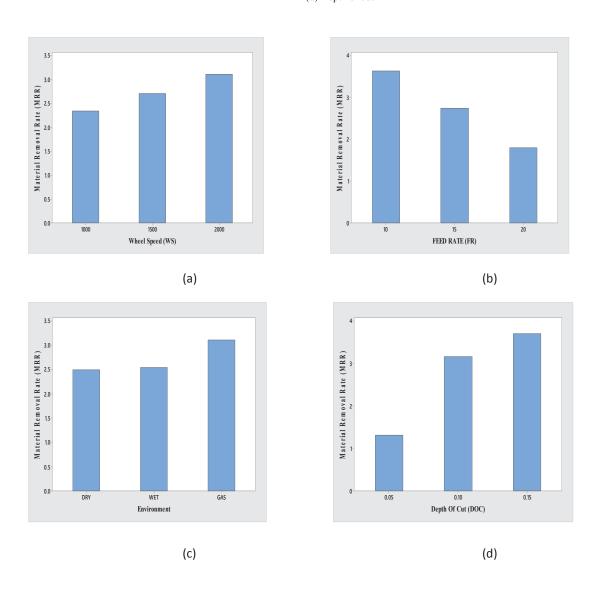


Table IV: Analysis of variance for S/N ratios (MRR)

SOURCE	DF	Seq SS	Adj SS	Adj MS	F	P	%C
ENVIRONMENT	2	6.761	6.761	3.381	0.22	0.809	0.89
WHEEL SPEED	2	9.994	9.994	4.997	0.33	0.734	1.32
FEED RATE	2	113.608	113.608	56.804	3.70	0.090	15.06
DEPTH OF CUT	2	448.462	448.462	224.231	14.60	0.005	59.45
ENVIRONMENT*WHEEL	4	15.021	15.021	3.755	0.24	0.903	1.99
SPEED							
ENVIRONMENT*FEED	4	20.123	20.123	5.031	0.33	0.850	2.67
RATE							
ENVIRONMENT*DEPTH	4	48.236	48.236	12.059	0.78	0.574	6.40
OF CUT							
Residual Error	6	92.172	92.172	15.362			12.22
Total	26	754.377					100

Table V: Response Table for Signal to Noise Ratios - Larger is better (MRR)

Level	ENVIRONMENT	WHEEL SPEED	FEED RATE	DEPTH OF CUT
1	-12.210	-12.681	-9.797	-17.626
2	-12.328	-11.878	-11.262	-9.749
3	-11.213	-11.192	-14.692	-8.376
Delta	1.116	1.489	4.895	9.250
Rank	4	3	2	1

Table IV and Table V presents ANOVA results for MRR. It can be seen that the depth of cut is the most important factor affecting material removal rate. Its contribution is 59.45%. The second factor influencing material removal rate (MRR) is workpiece feed rate. Its contribution is 15.06%. For the wheel conditioning i.e., environment in which wheel was used, its contribution is 1.32%. The interaction *ENVIRONMENT*×*WS* is most significant. Its contribution is 1.99%. The interactions *ENVIRONMENT* ×*FR* and *ENVIRONMENT* ×*DOC* are not much significant compared to interaction *ENVIRONMENT* ×*FR* and their contributions are 2.67% and 6.40% respectively.

V. CONCLUSION

In this paper the effect of grinding work zone environment i.e., dry, wet cooling and compressed gas and different process parameters on AISI H11 hot work steel were investigated. Experiments were carried out on the grinding of AISI H11 hot work steel with the Silicon carbide grinding wheel. The major conclusions from the investigation are as follows:

- 1. It was observed that higher material removal rate obtained under compressed gas environment than wet and dry environment, when grinding AISI H11 hot work steel under the same working parameters.
- 2. It was observed that depth of cut and feed rate were the most foremost factor to obtain higher MRR as compared to work zone environment condition and grinding wheel speed.

REFERENCES

- [1] Kwak Jae, Sim Sung (2006),"An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response surface method", International Journal of Machine Tools & Manufacture, 46, pp.304–312.
- [2] Xu L.M., Shen Bin, (2006), "Vitreous bond silicon carbide wheel for grinding of silicon nitride", International Journal of Machine Tools & Manufacture, vol. 46, pp. 631–639.
- [3] Monici Rodrigo Daun, Bianchi Eduardo Carlos (2006), "Analysis of the different forms of application and types of cutting fluid used in plunge cylindrical grinding using conventional", International Journal of Machine Tools & Manufacture, 46, pp. 122–131
- [4] Badger J. (2007), "Grindability of Conventionally produced and powder-metallurgy high-Speed Steel", Annals of the CIRP, Vol. 56, pp.353-356.
- [5] Guo C., Shi Z., Attia H. (2007),"Power and wheel wear for grinding nickel alloy with plated CBN wheels", Annals of the CIRP, Vol. 56, pp.343-346.
- [6] Liu J.H., Pei Z.J. (2007),"Grinding wheels for manufacturing of silicon wafers: A literature review", International Journal of Machine Tools & Manufacture, vol. 47, pp. 1–13.
- [7] Anderson D., Warkentin A. (2008),"Comparison of numerically and analytically predicted contact temperatures in shallow and deep dry grinding with infrared measurements", International Journal of Machine Tools & Manufacture, vol.48, pp.320–328.
- [8] Atzen E., Iulian L. (2008), "Experimental study on grinding of a sintered friction material", journal of materials processing technology, vol.196, pp.184-189.
- [9] Aurich J.C., Herzenstiel P. (2008),"High-performance dry grinding using a grinding wheel with a defined grain pattern", CIRP Annals-Manufacturing Technology, vol. 57, pp. 357–362.
- [10] Tawakoli Taghi, Azarhoushang Bahman (2008),"Influence of ultrasonic vibrations on dry grinding of soft steel", International Journal of Machine Tools & Manufacture, vol.48, pp.1585–1591.
- [11] Nguyen T., Zhang L.C. (2009),"Performance of a new segmented grinding wheel system", International Journal of Machine Tools & Manufacture, vol. 49, pp.291–296.
- [12] Brinksmeier E., Heinzel C. (2009), "Superfinishing and grind-strengthening with elastic bonding system", Journal of Materials Processing Technology, vol.209, pp. 6117–6123.
- [13] Fathallah Brahim Ben, Fredj Nabil Ben (2009),"Effects of abrasive type cooling mode and peripheral grinding wheel speed on the AISI D2 steel ground surface integrity", International Journal of Machine Tools & Manufacture, vol.49, pp.261–272.
- [14] Ronald B. Anand, Vijayaraghavan L. (2009),"Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites", Materials and Design, vol.30, pp. 679–686.
- [15] Herman Daniela (2009),"Influence of vitrified bond structure on radial wear of CBN grinding wheel", International Journal of Machine Tools & Manufacture, vol.49, pp.231–242.
- [16] Singh Vijayender, Ghosh S. (2010),"Grindability Improvement of Composite Ceramic with Cryogenic Coolant", Proceedings of the World Congress on Engineering 2010' Vol II, ISSN: 2078-0966 (Online).
- [17] Ramdatti J.L., Popat M.A. (2010),"Some study aspect of external cylindrical grinding machine parameters using Taguchi techniques", International journal of manufacturing technology and industrial engineering (IJMTIE), vol. 1, pp.13-18.
- [18] Demirci, Mezghani S., Mkaddem A., Mansori M. (2010), "Effects of abrasive tools on surface finishing under brittle-ductile grinding regimes when manufacturing glass, Journal of Materials Processing Technology, vol. 210, pp. 466–473.
- [19] Demir Halil, Gullu Abdulkadir, Ciftci Ibrahim, Ulvi Seker (2010),"An Investigation into the influences of grain size and grinding parameters on surface roughness and grinding forces when grinding", Journal of Mechanical Engineering, vol.56, pp. 447-454.
- [20] Lee Pil Ho, Lee S.W. (2011), "Experimental characterization of micro-grinding process using compressed chilly air", International Journal of Machine Tools & Manufacsture, vol.51, pp.201–209.
- [21] Mane A.B., Jadhav V.S. (2012), "Surface roughness enhancement of grinding process using Compressed air in case of dry machining", Indian journal of applied research, Vol. 2, pp.53-55.
- [22] Kadirgama K., Rahman M. M. (2012),"A surrogate modelling to predict surface roughness and surface texture when grinding AISI 1042 carbon steel", Scientific Research and Essays, Vol.7 (5), pp.598-608.
- [23] Jusko Ondrej (2012),"New abrasive materials and their influence on the surface quality of bearing steel after grinding", Acta Polytechnica, Vol. 52, pp.80-82.
- [24] Pal Deepak, Bangar Ajay, Sharma Rajan, Yadav Ashish (2012), "Optimization of Grinding Parameters for Minimum Surface Roughness by Taguchi Parametric Optimization Technique", International Journal of Mechanical and Industrial Engineering (IJMIE), ISSN No. 2231 –6477, Vol.1.
- [25] Manimaran G., Kumar M. P. (2013),"Effect of cryogenic cooling and sol-gel alumina wheel on grinding performance of AISI316 stainless steel", Archives of civil and mechanical engineering, vol.13, pp.304–312.
- [26] Deepak Kumar, Sanjeev Saini (2014)),"Effect of process parameters on material removal rate during grinding of hot work steel H11 under dry, wet and compressed gas environment", International Journal of Modern Engineering Research (IJMER), ISSN No. 2249 6645, Vol.4.