Synthesis and Efficacy of Divalent Metal Complexes with Ligand Derived from 2,2-Dihydroxyindane-1,3-dione and ethylenediamine against Gram Positive and Gram Negative Bacteria

Sangeeta Sharma
Department of Applied Sciences
Shaheed Bhagat Singh State Technical Campus, Ferozepur, Punjab, India.

Rimpi Mehani ne’e Chopra
Department of Chemistry
National College for Women, Machhiwara, Ludhiana, Punjab

Veenu Chugh
Department of Chemistry
Dasmesh girls college, Badal, Sri Muktsar Sahib, Punjab

Abstract - With the rise of pollution and the resistance developed by the microbes towards the pre-existing antimicrobial drugs, there is a demand of new, economical and effective antimicrobial drugs. As an extension of the work, a new series of divalent copper, nickel, iron and cobalt complexes were prepared templately using 2,2-dihydroxyindane-1,3-dione and ethylenediamines. Our own experience and through the literature survey, it is observed that the complexes of these metals have an antimicrobial tendencies. These complexes were found to have a distorted octahedral geometry by elemental analyses, molar conductance, electronic spectra and IR spectral data. The production of –C=N in the IR spectral data confirms cyclization through dehydration. Oxidation followed by estimation through volumetric analysis confirms the presence of a divalent metal, the molar conductance value indicates them to be non-electrolytes. Two Gram-positive bacteria and two Gram-negative bacteria were used for anti-bacterial study of the synthesized complexes and results were compared with the standard chloramphenicol and streptomycin. The complexes of copper were found to be anti-bacterial.

Keywords- 2,2-dihydroxyindane-1,3-dione, magnetic moments, Electronic spectra, efficacy, Octahedral, molar conductance, electronic excitation

1. INTRODUCTION

As researchers, we have been synthesizing and checking macrocyclic compounds for their antimicrobial activities. Macroyclic compounds and their derivatives are interesting ligand system. A number of nitrogen donor macrocyclic derivatives have long been used in analytical, industrial and medical applications. Macroyclic complexes are naturally occurring i.e. metalloproteins, porphyrins and cobalamin can also be synthetically prepared. Synthetic macrocyclic complexes mimic some naturally occurring macrocycles in their properties. Transition metal macrocyclic complexes have received great attention due to their biological activities, including antiviral, anticarcinogenic, antifertile, antibacterial and antifungal. Macroyclic metal complexes of lanthanides e.g., Gd(III), are used as MRI (magnetic resonance imaging) contrast agents. In a previous papers, the synthesis and characterization of macrocyclic complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) derived from various diamines and dicarbonyl were reported. It was found that the compounds of Copper were showing anti bacterial activities. In search of better results, this work is being presented with the template synthesis and characterization
of Co(II), Ni(II), Fe(II), Cu(II), Zn(II) macrocyclic complexes derived from the condensation of 2,2-
dihydroxyindane-1,3-dione and ethylenediamines. Complexes were characterized using various physicochemical
techniques, such as IR and UV/Vis spectroscopy, elemental analyses and conductivity measurements.
All the synthesized macrocyclic complexes were tested for In-vitro antibacterial activity for Two Gram-positive
bacteria Bacillus subtilis (MTCC 8509) and Bacillus stearothermophilus (MTCC 8508), two Gram-negative bacteria
Escherichia coli (MTCC 51) and Pseudomonas putida (MTCC 121).

II.EXPERIMENTAL

All the complexes are synthesized by template method i.e. by condensation of 2,2-dihydroxyindane-1,3-dione and
ethylenediamines in the presence of the respective divalent metal salts. To a hot stirring methanolic solution (~ 50
cm³) of 2,2-dihydroxyindane-1,3-dione (10 mmol) was added divalent cobalt, nickel, copper, iron and zinc salts (5
mmol) dissolved in the minimum quantity of methanol. The resulting solution was refluxed for 0.5hs.
Ethylenediamine (10 mmol) was added in the refluxing mixture and refluxing was continued for 8-10 h. The mixture
was concentrated to half of its original volume, cooled at room temperature and kept in a desiccator for overnight.
Dark colored precipitates were formed. These precipitates were filtered, washed with methanol, acetone,
diethylether and dried in vacuo. 60-70 % yield was obtained. The complexes are soluble in dimethylformamide
and dimethylsulphoxide. They were found thermally stable up to ~ 270-290°C and then decomposed. They do not
show any sharp melting point.

The template condensation of 2,2-dihydroxyindane-1,3-dione and ethylenediamine in the presence of divalent metal
salts, in the molar ratio 2:2:1 has been shown as follows:

Where M = Co(II), Ni(II), Fe(II), Cu(II), Zn(II)
X = Cl⁻, Br⁻.

III.RESULTS AND DISCUSSION

The formula for dark coloured solid macrocyclic complexes was derived on the basis of the analytical data presented
in table1.1 as: \([\text{M(C}_{22}\text{H}_{16}\text{N}_{8})\text{X}_2]\); Where M = Co(II), Ni(II), Fe(II), Cu(II) and Zn(II); X = Cl⁻, Br⁻ . The molar conductance value was low (10-17 ohm⁻¹ cm² mol⁻¹). It was determined in dimethylsulphoxide as solvent indicates
their non-electrolyte nature [8]. The test for anions was positive only after decomposing the complexes. This indicates
that the anions are present inside the coordination sphere and are contributing to the secondary valency of the
transition metal.

Data from mass spectroscopy was helpful in determining the molecular mass of the complexes as various attempts
for crystallization using mixtures of solvents, low temperature crystallization were unsuccessful to obtain a single
crystal suitable for X-ray crystallography. However, the analytical data, spectroscopic and magnetic data also
supported us to predict the possible structure of the synthesized complexes.

Mass Spectra:
The fast atom bombardment mass spectra were recorded using nitrobenzyl alcohol matrix for the synthesized
macrocyclic complexes. All the spectra exhibit parent peaks due to molecular ions [M]⁺. The molecular ion [M]⁺ &
[M+4]⁺ peaks obtained for various complexes are as follows:
[Fe(C₂₂H₁₆N₈O₂)Cl₂]⁺ = 495 & 499, [Fe(C₂₂H₁₆N₈O₂)(Br₂)]⁺ = 584 & 588, [Co(C₂₂H₁₆N₈O₂)Cl₂]⁺ = 498 & 502, [Co(C₂₂H₁₆N₈O₂)(Br₂)]⁺ = 587 & 591, [Ni(C₂₂H₁₆N₈O₂)Cl₂]⁺ = 497.6 & 501.6, [Ni(C₂₂H₁₆N₈O₂)(Br₂)]⁻ = 586.6 & 589.6, Cu(C₂₂H₁₆N₈O₂)Cl₂ = 499.5 & 503.5, Cu(C₂₂H₁₆N₈O₂)(Br₂) = 588.5 & 592.5, [Zn(C₂₂H₁₆N₈O₂)Cl₂]⁺ = 504.5 & 508.5, [Zn(C₂₂H₁₆N₈O₂)(Br₂)]⁺ = 593.5 & 597.5.

The proposed molecular formula of these complexes was confirmed by comparing their molecular formula weights with m/z values. The data is in good agreement with the proposed molecular formula for these complexes i.e. [M(C₂₂H₁₆N₈O₂)X₂]. This confirms the formation of the macrocyclic frame. In addition to the peaks due to the molecular ions, the spectra exhibit peaks assignable to various fragments arising from the thermal cleavage of the complexes. [M+4⁺] peaks confirm the presence of two halogen atoms (Cl/Br) in the compound. The peak intensity gives an idea of the stability of the fragments.

Infrared Spectra:

In the infrared spectra of all the metal complexes, appearance of a strong band at ~1720 cm⁻¹ may be assigned due to carbonyl >C=O group which was formed by dehydration of geminal hydroxyl groups due to heating. It was noted that a pair of bands at ~3500 and 3400 cm⁻¹ corresponding to free asymmetric and symmetric N-H stretching modes of -NH₂ group present in infrared spectra of ethylenediamine were absent in the infrared spectra of all the metal complexes. There were bands present in the range ~1350-1000 cm⁻¹ in all the complexes were assigned to v(C-N) stretching vibrations. A strong absorption band was seen in the region ~1595-1640 cm⁻¹ which may be attributed to the v(C=O) group of ninhydrin. The presence of stretching bands at ~1462 and ~1500 cm⁻¹ may be assigned to >C=C< skeleton of benzenoid rings. The spectra exhibit a ring breathing mode at ~990 cm⁻¹, an out-of-plane v(C-C) deformation at ~810 cm⁻¹, an in-plane v(C-C) deformation at ~620 cm⁻¹ and out-of-plane deformation at ~410 cm⁻¹, respectively.

The far infrared spectra showed bands in the region ~420-470 cm⁻¹ corresponding to v(M-N) vibrations. The presences of these bands in all complexes give an idea about the coordination of azomethine nitrogen to the central metal atom. The bands present at ~290-310 cm⁻¹ may be assigned as being due to v(M-Cl) vibrations.

IH NMR Spectra: These complexes did not form a clear solution hence NMR could not be obtained.

Magnetic measurements and electronic spectra:

Iron (II) Complexes: The effective magnetic moments of iron complexes were found to be in the range of 5.1-5.5 B.M., owing to the spins of the four unpaired electrons and a small, second order orbital contribution in a high spin d⁶ system. The values were consistent with the spin free octahedral nature of these complexes (12). The electronic spectra of the iron complexes showed a double peak at ~1,0800 cm⁻¹ and a shoulder at ~8,350 cm⁻¹ with a number of very small peaks at ~20,000 cm⁻¹. The double peak may be due to ¹T₃₂ → ¹E₈ transition split by ~2,000 cm⁻¹ owing to Jahn-Teller distortion which derives from a 3T₂g configuration. The small peaks were assigned to spin-forbidden bands. The assignments were based on approximate D₈h symmetry of the complexes, since the spectra were consistent with the lower symmetry of these complexes (13). The energy level sequence for iron(II) complexes may be drawn as: ³B₃₂ < ³E₄ < ³A₁₈ < ³B₁₈ (14). The spectra resemble to those reported for six coordinate distorted octahedral iron(II) complexes (13,15,16).

Cobalt(II) complexes: The magnetic moments of the cobalt complexes were measured at room temperature and were found in the range of 4.90-4.95 B.M., which corresponds to three unpaired electrons (18,256). The electronic spectra of the cobalt(II) complexes recorded in DMFO, resemble to those complexes reported to be distorted octahedral (13). These spectra exhibits three absorption peaks in the region 8,150-9,280 cm⁻¹ (v₁), 13,500-15,550 cm⁻¹ (v₂) and 18,500-20,500 cm⁻¹ (v₃), respectively. Thus, assuming the effective symmetry to be D₆h, the various bands may be assigned to the transitions: ¹T₁₈ → ¹T₅₂ (F), (v₁); ¹T₁₈ → ¹A₂₂ (F), (v₂); ¹T₁₈ → ¹T₁₈ (P), (v₃), respectively. The assignment of the first spin-allowed band seems plausible since the first band appears approximately at half the energy of the visible (13). Various bands do not follow any regular pattern and seem to be anion independent. Various ligand field parameters, Dq, B, β, and β% were calculated for the complexes and has been listed in the Table. The value of B is 971 cm⁻¹ for free cobalt (II) ion. The Nephelauxetic parameter β was calculated for the
complexes and the values of β lie in the range of 0.52-0.56. These values indicate the presence of covalent character of the metal ligand ‘σ’ bond. The values of the v_2/v_1 ratio lie between 1.66-1.73 and suggest the octahedral structure for these complexes (15).

Nickel(II) Complexes: The magnetic moments of the nickel complexes at room temperature were found in the range of 2.94-3.10 B.M. These values indicate a high spin configuration and showed the presence of two unpaired electrons in the Ni(II) ion in all complexes (15). The spectra of Ni(II) complexes recorded in DMSO solution exhibit a well discerned band with a shoulder on the low energy side. The other two bands generally observed in the region 16,500-17,200 cm$^{-1}$ (v_2) and 27,800-28,300 cm$^{-1}$ (v_3), were assigned to $^3A_2g \rightarrow ^3T_{1g}$ (F) (v_2), and $^3A_2g \rightarrow ^3T_{1g}$ (P) (v_3), respectively. The first two bands result from the splitting of one band, v_1 and were in the range of ~ 9,650-10,200 and 11,850-12,350 cm$^{-1}$, which may be assigned to $^3B_{1g} \rightarrow ^1E_g$ and $^3B_{1g} \rightarrow ^1B_{2g}$, assuming the effective symmetry to be D_{4h} (component of T_{2g} in O_h symmetry) (13). The intense higher energy bands at 34,540 cm$^{-1}$ were assigned to $^3A_2g \rightarrow ^3T_{1g}$ (3E_g) and $^3B_{1g} \rightarrow ^3B_{2g}$, assuming the effective symmetry to be D_{4h} (component of T_{2g} in O_h symmetry) (13). The other two bands generally observed in the region $16,500-17,200$ cm$^{-1}$ for the complex and $27,800-28,300$ cm$^{-1}$ for the complex, and have been listed in the Table. The value of B for free nickel(II) ion is 1040 cm$^{-1}$. The Nephelauxetic parameter β was calculated for the complexes and the values of β lie in the range of 0.58-0.62. These values indicate that the presence of covalent character of the metal ligand ‘σ’ bond. The values of the v_2/v_1 ratio lie between 1.37-1.42 and suggest the complexes as octahedral structure geometry (17).

Copper(II) Complexes: The magnetic moments of copper complexes was found in the range of 1.76-1.80 B.M. The electronic spectra of the Cu(II) complexes exhibit bands in the region 17,750-19,500 cm$^{-1}$, with a shoulder on the low energy side at ~14,500-16,000 cm$^{-1}$, and showed that these complexes were distorted octahedral (15). Assuming tetragonal distortion in the molecule, the d-orbital energy level sequence for these complexes may be: $x^2-y^2 > z^2 > xy > xz > yz$ and the shoulder may be assigned to: $z^2 \rightarrow x^2-y^2$ ($^2B_{2g}$) and the broad band contains both the $xy \rightarrow x^2-y^2$ ($^2B_{1g}$) and $xy, yz \rightarrow x^2-y^2$ ($^2A_{2g}$) transition (19). The band separation of the spectra of the complexes was of the order of 2,500 cm$^{-1}$, which was consistent with proposed geometry of these complexes (19). Therefore, it may be concluded that all the complexes formed by macrocycles with Cu(II) metals were distorted octahedral.

Zinc(II) Complexes: Zinc are considered to have no d-d transition as the electronic configuration of Zn$^{+2}$ ion is 3d10, 4s2. So no electronic spectra are available for zinc complexes.

EPR Spectra:

The EPR spectra of the copper(II) complexes were recorded at room temperature in solid state, on X-band, at frequency of 9.5 GHz under the magnetic field of 3000 G. The spectrum of the complex exhibits a single anisotropic broad signal. The analysis of the spectra gives $g_{||}$ values in the range 2.2125-2.2308 and g_\perp values in the range 2.1625-2.1850 (Table-2.14). The trend $g_{||} > g_\perp > 2.0023$ (ge), observed for the complex indicate that the unpaired electron is localized in d_{xz} orbital of the copper(II) ion, this suggests distortion in the copper(II) complexes from O_h symmetry to D_{4h} symmetry. The observed $g_{||}$ value for the copper(II) complexes is less than 2.3 which is in agreement with the covalent character of the metal ligand bond.

IV. ANTIMICROBIAL ACTIVITIES OF DIVALENT COBALT, NICKEL, COPPER, ZINC AND CADMIUM COMPLEXES DERIVED FROM ETHYLENEDIAMINE AND NINHYDRIN.

Two Gram-positive bacteria *Bacillus subtilis* (MTCC 8509) and *Bacillus stearothermophilus* (MTCC 8508), two Gram-negative bacteria *Escherichia coli* (MTCC 51) and *Pseudomonas putida* (MTCC 121) were used for biological study of the synthesized complexes formed by the condensation of 2,2-dihydroxyindane-1,3-dione and ethylenediamine in the presence of the respective divalent metal salts. The complexes of copper show a comparable amount of antibacterial activities for *Bacillus subtilis* (MTCC 8509) and *Bacillus stearothermophilus* (MTCC 8508) only.

In-vitro antibacterial activity

Primary screening: The antibacterial activities of the newly synthesized complexes were evaluated by Agar Well Diffusion Assay technique against two Gram-negative bacteria: *Escherichia coli* (MTCC 51) and *Pseudomonas putida* (MTCC 121) and two Gram-positive bacteria: *Bacillus subtilis* (MTCC 8509) and *Bacillus stearothermophilus* (MTCC 8508) only.
putida (MTCC 121) and two Gram-positive bacteria: *Bacillus subtilis* (MTCC 8509) and *Bacillus stearothermophilus* (MTCC 8508). The bacterial cultures were maintained on the nutrient agar media by sub-culturing them on the fresh slants after every 4-6 weeks and incubating them at the appropriate temperature for 24 h. All stock cultures were stored at 4°C. For the evaluation of antimicrobial activities of the synthesized compounds, suspension of each test microorganism was prepared. Turbidity of each suspension was adjusted to 0.5 McFarland units by suspending the cultures in sterile distilled water. The size of final inoculum was adjusted to 5×10^7 cfu/ml. A volume of 20 ml of agar media was poured into each Petri plate and plates were swabbed with broth cultures of the respective micro-organisms and kept for 15 minutes for adsorption to take place. Wells of ≈ 8 mm diameter were punched in the seeded agar plates and a 100 μl volume of each test compound reconstituted in DMSO was added into the wells. DMSO was used as control for all the test compounds. To allow diffusion of the compounds in to the agar, the plates were held at room temperature for 2 h. After that the plates were incubated at 37°C for 24 h. Antibacterial activities were determined by measuring the inhibition zone diameter. The entire tests were made in triplicates and mean of the diameter of inhibition was calculated.

Determination of minimum inhibitory concentration (MIC): The minimum inhibitory concentration (MIC) is the lowest concentration of the antimicrobial agent that prevents the development of viable growth after overnight incubation.[21] Nutrient broth was adjusted to pH 7.0 used for the determination of MIC. The inoculum of the test microorganisms were prepared by using 16 h old cultures adjusted by reference to the 0.5 McFarland standards (10^8 cells/ml).[22] These cultures were further diluted up to 10 folds with nutrient broth to get the inoculum size of 1.2×10^7 cfu/ml. A positive control (containing inoculum but no compound) and a negative control (containing compound but no inoculum) were also prepared. A stock solution of 4 mg/ml of each compound was prepared in DMSO and further appropriately diluted to get final concentration ranging from 250 to 0.03 μg/ml. Separate flasks were taken for each test dilution. To each flask was added the 100 μl of inoculum. Then appropriately diluted test sample was added to each flask having broth and microbial inoculum. The contents of the flask were mixed and incubated for 24 to 48 h at 37°C. The test bacterial culture were spotted in a predefined pattern by aseptically transferring 5 μl of each bacterial culture on the surface of solidified agar plates and incubated at 37°C for 24 h for determining the MIC values.

Table-1: Analytical data of divalent cobalt, nickel, copper, zinc and cadmium complexes derived from Ethylenediamine and Ninhydrin.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Complexes Found</th>
<th>% (Calcd.)</th>
<th>Colour</th>
<th>Mol. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>[Fe(C_{22}H_{16}N_{8}O_{2})Cl_{2}]</td>
<td>11.1(11.31)</td>
<td>53.2(53.3)</td>
<td>3.09(3.23)</td>
</tr>
<tr>
<td>(2)</td>
<td>[Fe(C_{22}H_{16}N_{8}O_{2})Br_{2}]</td>
<td>95.5(95.89)</td>
<td>45.0(45.2)</td>
<td>2.60(2.73)</td>
</tr>
<tr>
<td>(3)</td>
<td>[Co(C_{22}H_{16}N_{8}O_{2})Cl_{2}]</td>
<td>11.5(11.8)</td>
<td>52.9(53.1)</td>
<td>3.1(3.21)</td>
</tr>
<tr>
<td>(4)</td>
<td>[Co(C_{22}H_{16}N_{8}O_{2})Br_{2}]</td>
<td>09.4(09.65)</td>
<td>44.7(44.9)</td>
<td>2.6(2.72)</td>
</tr>
<tr>
<td>(5)</td>
<td>[Ni(C_{22}H_{16}N_{8}O_{2})Cl_{2}]</td>
<td>11.6(11.77)</td>
<td>52.9(53.05)</td>
<td>1.1(1.20)</td>
</tr>
<tr>
<td>(6)</td>
<td>[Ni(C_{22}H_{16}N_{8}O_{2})Br_{2}]</td>
<td>09.7(09.89)</td>
<td>44.9(45.00)</td>
<td>2.6(2.72)</td>
</tr>
<tr>
<td>(7)</td>
<td>[Cu(C_{22}H_{16}N_{8}O_{2})Cl_{2}]</td>
<td>12.3(12.50)</td>
<td>52.5(52.8)</td>
<td>3.1(3.20)</td>
</tr>
<tr>
<td>(8)</td>
<td>[Cu(C_{22}H_{16}N_{8}O_{2})Br_{2}]</td>
<td>10.7(10.79)</td>
<td>44.6(44.85)</td>
<td>2.6(2.72)</td>
</tr>
<tr>
<td>(9)</td>
<td>[Zn(C_{22}H_{16}N_{8}O_{2})Cl_{2}]</td>
<td>12.94(12.98)</td>
<td>52.0(52.3)</td>
<td>3.1(3.17)</td>
</tr>
<tr>
<td>(10)</td>
<td>[Zn(C_{22}H_{16}N_{8}O_{2})Br_{2}]</td>
<td>10.9(11.03)</td>
<td>44.2(44.4)</td>
<td>2.6(2.69)</td>
</tr>
</tbody>
</table>
Table-2: Ligand field parameters of the divalent cobalt and nickel complexes derived from Ethylenediamine and Ninhydrin.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Complexes</th>
<th>Dq (cm(^{-1}))</th>
<th>B' (cm(^{-1}))</th>
<th>β</th>
<th>β %</th>
<th>(\nu_2/\nu_1)</th>
<th>(\mu_{\text{eff}}) (B.M.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>[Fe(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>245</td>
<td>916</td>
<td>0.872</td>
<td>77.2</td>
<td>1.293</td>
<td>5.1</td>
</tr>
<tr>
<td>(2)</td>
<td>[Fe(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>261</td>
<td>955</td>
<td>0.909</td>
<td>90.9</td>
<td>1.311</td>
<td>5.3</td>
</tr>
<tr>
<td>(3)</td>
<td>[Co(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>519</td>
<td>582</td>
<td>0.599</td>
<td>59.9</td>
<td>1.721</td>
<td>4.9</td>
</tr>
<tr>
<td>(4)</td>
<td>[Co(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>520</td>
<td>417</td>
<td>0.429</td>
<td>42.9</td>
<td>1.571</td>
<td>4.4</td>
</tr>
<tr>
<td>(5)</td>
<td>[Ni(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>698</td>
<td>1023</td>
<td>0.983</td>
<td>98.3</td>
<td>1.710</td>
<td>2.94</td>
</tr>
<tr>
<td>(6)</td>
<td>[Ni(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>709</td>
<td>1030</td>
<td>0.990</td>
<td>99.0</td>
<td>1.715</td>
<td>3.0</td>
</tr>
<tr>
<td>(7)</td>
<td>[Cu(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>290</td>
<td>2207</td>
<td>0.883</td>
<td>88.3</td>
<td>1.192</td>
<td>1.76</td>
</tr>
<tr>
<td>(8)</td>
<td>[Cu(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>275</td>
<td>2250</td>
<td>0.9</td>
<td>99.0</td>
<td>1.177</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Table-3: Minimum inhibitory concentration (MIC) of divalent metal complexes derived from Ninhydrin and Ethylenediamine against test bacteria by using agar dilution assay.

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Complexes</th>
<th>MIC (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>(1)</td>
<td>[Fe(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>>64</td>
</tr>
<tr>
<td>(2)</td>
<td>[Fe(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>>64</td>
</tr>
<tr>
<td>(3)</td>
<td>[Co(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>32</td>
</tr>
<tr>
<td>(4)</td>
<td>[Co(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>16</td>
</tr>
<tr>
<td>(5)</td>
<td>[Ni(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>16</td>
</tr>
<tr>
<td>(6)</td>
<td>[Ni(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>32</td>
</tr>
<tr>
<td>(7)</td>
<td>[Cu(C({22}H{16}N_8O_2)Cl(_2)]</td>
<td>04</td>
</tr>
<tr>
<td>(8)</td>
<td>[Cu(C({22}H{16}N_8O_2)Br(_2)]</td>
<td>08</td>
</tr>
</tbody>
</table>
\(a\)-Bacillus subtilis (MTCC 8509)

\(b\)-Bacillus stearothermophilus (MTCC 8508)

c- Pseudomonas putida (MTCC 121)

d- Escherichia coli (MTCC 51)

Chloramphenicol, Streptomycin – Standard antibiotics

V. PROPOSED STRUCTURE

Therefore, based on various studies like elemental analyses, conductance measurements, magnetic susceptibilities, infrared, NMR, electronic and mass spectral studies a distorted octahedral geometry as shown in Fig.-1 may be proposed for all the divalent macrocyclic metal complexes.

\[
\begin{array}{c}
\text{Fig.-1} \\
\begin{array}{c}
\text{Where } M = \text{Fe(II), Co(II), Ni(II), Cu(II), Zn(II)} \\
X = \text{Cl}^-, \text{Br}
\end{array}
\end{array}
\]

REFERENCES