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Absract: String Similarity Joins plays a very important role in many applications related to data 

integration, data cleaning, and pattern matching and data reduplication. A String Similarity Join finds 

pair of items from two data sets such that the pairs similarity value is no less than a given threshold value. 

Several approaches have been proposed and compared for string similarity join. The past two decades 

there are many algorithms have been projected for string similarity join. But the presented algorithms 

have not been methodically compared under the same framework. Many algorithms where tested only on 

particular datasets. This makes difficult for the practitioners to make a decision on which algorithms 

should be used at different situation. In this paper we study the string similarity joins algorithms and 

their usability. We approached three different techniques such as Parallel Set, MGJoin and MassJoin for 

scalable string similarity join. Finally we compare these algorithm based on some general characteristics. 

.  

Keywords- Data Integration, Data cleaning, String Similarity join, Pattern Matching. 

I. INTRODUCTION 

A string similarity join among two sets of strings find every similar string pairs from the two set of 

data. The association of two strings can be quantified by similarity metrics between two strings [1]. String 

similarity join plays a very important role in several real-world applications such as duplication detection, data 

cleaning and integration [5]. Given two set of strings, for example products and city names, the string similarity 

join trouble to find out all similar string pairs from the two collections. 

 

The brute-force algorithm that enumerates each string pair and ensures whether the two strings in the 

pair are similar is very expensive. Many algorithms have been proposed in the past two decades to solve this 

problem, In the past two decades data mining has emerge as a major research area .This is main  due to the inter-

disciplinary character of the subject and the various series of application domain in which data mining based 

products and technique are being employed. This includes medicine, education and marketing bioinformatics, 

clinical research, genetics and research.  

 

II. PRELIMINARIES 

Given two set of strings, the string similarity join problem is to find all the similar pairs from the two 

sets. Similarity metric is the calculation that can be used to check whether two strings are similar or not [9]. The 

existing similarity metrics can be categorized into character based similarity metrics and token-based similarity 

metrics.  
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Character-based Metrics: These metrics measure the similarity between two strings based on character 

transformations. One depiction of character-based metric is edit distance. It finds the  distance between two 

strings at the least number of edit operations needed to change one string in to other string, where the permitted 

edit operations such as insertion, deletion, and substitution [2][3]. For example, consider two strings “xnrs” and 

“pxnrs”. The edit distance of (“xnrs”,“pxnrs”) = 1, since the first one can be transformed to the second one by 

inserting a character “p”. 

 

Token-based Metrics: These metrics first alter strings into sets of tokens and then use the set-based 

similarity metrics to measure the similarity. The token-based metrics are appropriate for long strings. Two 

strategies are generally used to change strings into sets: (1) tokenization and (2) q-grams. The first one tokenizes 

strings based on particular characters. The second one uses strings substrings with length q to produce the set, 

where the substring with length q is called a q-gram.  

 

Map Reduce: MapReduce is one of the famous frameworks projected by Google to make possible processing of 

large-scale data in parallel. The actual computations are specified by the user in terms of two separate functions 

as map and reduced [7]. These computations are automatically parallelized transversely large-scale clusters of 

machines by the original runtime system. In MapReduce, data is initially partitioned across the nodes of a 

cluster and stored in a distributed file system (DFS). Data is represented as (value,key) pairs. The calculation is 

articulated using two functions: 

 Map (k1, v1)              list (k2, v2); 

 Reduce (k2, list (v2))  list (k3, v3); 

The map function takes as input a (key, value) pair, denoted by (k1, v1), and produces as output a list of new 

(key, value) pairs, denoted by list(k2, v2).The reduce function takes as the input one of the keys output from the 

map (k2) and a list containing all the values output with that key (list(v2)). In return, the reduce function outputs 

a new list of (key, value) pairs, expressed by list (k3, v3). 

 
Figure 1 Dataflow in a MapReduce calculation 

 

Figure 1 depicts the Flow of data in a MapReduce Calculation. 

 

III. PARALLEL SET SIMILARITY FRAMEWORK 
The parallel set similarity join is the primary approach towards scalable string similarity join. This 

method consists of 3 stages as follows:  

1. In the first stage the data can be scanned and then frequency of each token can be calculated. Finally the 

tokens are sorted based on frequency. This is called as token ordering. 

2. In the second stage list of similar RID pairs produced by using the prefix filtering standard. Further the 

MapReduce framework groups the RID and join attribute value pairs based on prefix token, 

3. In the third stage, by using list of similar RID pairs and the original data the pair of similar records are 

generated. 
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Figure 2 Framework of Parallel set Similarity Join 

 

Figure 2 depicts the functional block diagram of Parallel set Similarity Join. The three stages based on 

self-join can discussed further in detail: 

Stage 1: Token Ordering 

We consider two possible alternate methods for ordering the tokens in the first stage. Both methods 

take as input the original records and produce a list of the tokens that appear in their join-attributes ordered 

increasingly by their global frequency of usage. 

 

A.Basic Token Ordering (BTO): 

Basic Token Ordering (“BTO”) depends on two MapReduce phases. The frequency of each token is 

computed in the first phase then in the second phase the tokens are arranged based on their frequencies. In the 

first phase, the map function receives as input the original records. For each record, the function extracts the 

value of the join attribute and tokenizes it. The second phase uses MapReduce to arrange the pairs of tokens and 

frequencies from the first phase [4]. The Map function swap the input keys and values so that the input pairs of 

the reduce function are arranged based on their frequencies. This phase uses accurately one reducer so that the 

result is a completely ordered list of tokens. 

 

B.One-Phase Token Ordering (OPTO): 

The list of tokens can be much smaller than the original data size in OPTO [10]. We can sort the tokens 

explicitly in memory instead of MapReduce, The reduce function in One-Phase Token Ordering gets as input a 

list of tokens and their limited counts. For each token, the function computes its whole count and stores the 

information. 

 

Stage 2: RID-Pair Generation 

The second stage of the join, called the “Kernel”, which scans the original input data and extracts the 

prefix of each record using the token order computed by the first stage. In general the list of distinct tokens is 

much smaller and grows much more slowly than the list of records. We thus assume that the set of tokens fits in 

memory. Based on the prefix tokens, we extract the RID and the join-attribute value of each one record, and 

then distribute these record projections to reducers. The join-attribute values that share at least one prefix token 

are verified at a reducer. 

 

Approaches to find out the RID pair of similar records:  

A. Basic Kernel (BK): Computation of similarity in join attribute values can be calculated by nested 

loop approach. The map function fetches RID and join attribute values after taking out the original data , then 

this function can tokenizes the join attribute and calculates the prefix length. Finally it uses individual or group 

token routing strategy to produce output pair.  

 

B. Indexed Kernel (PK): This function uses already availability set of similarity join algorithm like 

PPJoin+ to find RID pairs of similar records. Hence it is known as PPJoin+ Kernel (PK). 

 

Stage 3: Record Join 
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In the final stage of the algorithm is to use the RID pairs generated in the second stage to join their 

records and there are two approaches used in this stage. The main idea is to first fill in the record information for 

each half of the pair and then use the two halves to build the complete record pair. The two approaches differ in 

the way the list of RID pairs is presented as input. In the first approach, called Basic Record Join (“BRJ”), the 

list of RID pairs is treated as a normal MapReduce input [6], is presented as input to the map functions. In the 

second approach, called One-Phase Record Join (“OPRJ”), the list is broadcast to all the maps and loaded before 

reading the input data. Duplicate RID pairs from the previous stage are eliminated in this stage. 

 

IV. MGJOIN FRAMEWORK 

Several algorithms were projected for string similarity join. They adopt a two stage filter and refine 

strategy in identifying similar string pairs: 

1. Candidate pair can be generated after traversing the inverted  

    index. 

2. The candidate pair can be verified by calculating the similarity.  

Most of the algorithms suffer from few pruning power, or they acquire too much calculations are 

needed to improve the pruning power. Hence a multiple prefix filtering method based on global ordering is 

projected called as MGJoin. MGJoin is based on multiple prefix filtering technique [10]. It applies various 

global orderings in a pipelined manner.  

 

V. MASSJOIN FRAMEWORK 

MASSJOIN is a scalable MapReduce-based string similarity join algorithm. This algorithm can support 

both set-based similarity functions and character-based similarity functions [7]. MapReduce contains two most 

important stages: the filter stage and the verification stage. MassJoin algorithms working principles involves the 

following steps: 

A. Signature Generation 

The character based similarity function depends on given edit-distance threshold and generates a fixed 

number of signatures. Therefore in set-based similarity functions, the number of signatures depends on the string 

lengths [8]. The signatures can be generated in MassJoin algorithm. MassJoin algorithm has two methods for 

signature generation one is Position-aware method and another one is Muti-match-aware method [8]. These two 

methods can be used simultaneously called as hybrid method. This approach will decrease the number of 

signatures generated simultaneously avoiding false negatives. 

 

 
 

Figure 3 MassJoin Framework 
A. Filter Stage 

In this filter phase the candidate pairs can be generated by using the filter techniques .The two string r 

and s must share a signature if two strings r and s are similar. We use the signatures as keys and the strings as 

values in the Map Phase. The two similar strings must share a same key, that must be shuffled to the similar 

reduce task. To reduce the transmission cost a key-value pair taken as input. 

 

B. Verification Stage 

In the verification stage, the candidate pairs generated from the filter stage can be verified. Candidate 

pairs generated from the filter stage can be verified in this stage. It provides with a two-phase method to handle 

two important goals; first to eliminate duplicates which arise due to two strings sharing multiple signature and 

second to replace the id in candidate pair with real string. 
 

TABLE 1 COMPARITVE ANALYSIS OF PARALLEL SET SIMILARITY JOIN, MGJOIN AND MASSJOIN 
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VII. CONCLUSIONS 

This paper provides a broad survey of existing string similarity join algorithms, including MassJoin, MGJoin 

and Parallel set similarity join. The Parallel set similarity join is a three phase based method. It considers a 

single token as key which leads to low pruning power and skewed problem. The MassJoin algorithm looks out 

the shortcoming faced by preceding two approaches efficiently. It implements character based in addition to set 

based similarity function which is suitable for short strings as well as large documents. It also implements the 

merging technique and light weight filters, that improves the performance of MassJoin significantly over 

MGJoin and Parallel set similarity joins. 
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