
International Journal of Innovations in Engineering and Technology (IJIET)

100

Volume 7 Issue 4 December

2016
ISSN: 2319 - 1058

Survey of String Similarity Join Algorithms

on Large Scale Data

P.Selvaramalakshmi

Research Scholar

Dept. of Computer Science

Bishop Heber College (Autonomous) Tiruchirappalli, Tamilnadu, India.

Dr. S. Hari Ganesh
 Asst. Professor

 Dept of Computer Science

H.H. The Rajah’s College Puddukottai Tamilnadu, India.

J.James Manoharan

Asst. Professor

Dept. of Computer Applications

Bishop Heber College (Autonomous) Tiruchirappalli, Tamilnadu, India.

Absract: String Similarity Joins plays a very important role in many applications related to data

integration, data cleaning, and pattern matching and data reduplication. A String Similarity Join finds

pair of items from two data sets such that the pairs similarity value is no less than a given threshold value.

Several approaches have been proposed and compared for string similarity join. The past two decades

there are many algorithms have been projected for string similarity join. But the presented algorithms

have not been methodically compared under the same framework. Many algorithms where tested only on

particular datasets. This makes difficult for the practitioners to make a decision on which algorithms

should be used at different situation. In this paper we study the string similarity joins algorithms and

their usability. We approached three different techniques such as Parallel Set, MGJoin and MassJoin for

scalable string similarity join. Finally we compare these algorithm based on some general characteristics.

.

Keywords- Data Integration, Data cleaning, String Similarity join, Pattern Matching.

I. INTRODUCTION

A string similarity join among two sets of strings find every similar string pairs from the two set of

data. The association of two strings can be quantified by similarity metrics between two strings [1]. String

similarity join plays a very important role in several real-world applications such as duplication detection, data

cleaning and integration [5]. Given two set of strings, for example products and city names, the string similarity

join trouble to find out all similar string pairs from the two collections.

The brute-force algorithm that enumerates each string pair and ensures whether the two strings in the

pair are similar is very expensive. Many algorithms have been proposed in the past two decades to solve this

problem, In the past two decades data mining has emerge as a major research area .This is main due to the inter-

disciplinary character of the subject and the various series of application domain in which data mining based

products and technique are being employed. This includes medicine, education and marketing bioinformatics,

clinical research, genetics and research.

II. PRELIMINARIES

Given two set of strings, the string similarity join problem is to find all the similar pairs from the two

sets. Similarity metric is the calculation that can be used to check whether two strings are similar or not [9]. The

existing similarity metrics can be categorized into character based similarity metrics and token-based similarity

metrics.

International Journal of Innovations in Engineering and Technology (IJIET)

101

Volume 7 Issue 4 December

2016
ISSN: 2319 - 1058

Character-based Metrics: These metrics measure the similarity between two strings based on character

transformations. One depiction of character-based metric is edit distance. It finds the distance between two

strings at the least number of edit operations needed to change one string in to other string, where the permitted

edit operations such as insertion, deletion, and substitution [2][3]. For example, consider two strings “xnrs” and

“pxnrs”. The edit distance of (“xnrs”,“pxnrs”) = 1, since the first one can be transformed to the second one by

inserting a character “p”.

Token-based Metrics: These metrics first alter strings into sets of tokens and then use the set-based

similarity metrics to measure the similarity. The token-based metrics are appropriate for long strings. Two

strategies are generally used to change strings into sets: (1) tokenization and (2) q-grams. The first one tokenizes

strings based on particular characters. The second one uses strings substrings with length q to produce the set,

where the substring with length q is called a q-gram.

Map Reduce: MapReduce is one of the famous frameworks projected by Google to make possible processing of

large-scale data in parallel. The actual computations are specified by the user in terms of two separate functions

as map and reduced [7]. These computations are automatically parallelized transversely large-scale clusters of

machines by the original runtime system. In MapReduce, data is initially partitioned across the nodes of a

cluster and stored in a distributed file system (DFS). Data is represented as (value,key) pairs. The calculation is

articulated using two functions:

 Map (k1, v1) list (k2, v2);

 Reduce (k2, list (v2)) list (k3, v3);

The map function takes as input a (key, value) pair, denoted by (k1, v1), and produces as output a list of new

(key, value) pairs, denoted by list(k2, v2).The reduce function takes as the input one of the keys output from the

map (k2) and a list containing all the values output with that key (list(v2)). In return, the reduce function outputs

a new list of (key, value) pairs, expressed by list (k3, v3).

Figure 1 Dataflow in a MapReduce calculation

Figure 1 depicts the Flow of data in a MapReduce Calculation.

III. PARALLEL SET SIMILARITY FRAMEWORK
The parallel set similarity join is the primary approach towards scalable string similarity join. This

method consists of 3 stages as follows:

1. In the first stage the data can be scanned and then frequency of each token can be calculated. Finally the

tokens are sorted based on frequency. This is called as token ordering.

2. In the second stage list of similar RID pairs produced by using the prefix filtering standard. Further the

MapReduce framework groups the RID and join attribute value pairs based on prefix token,

3. In the third stage, by using list of similar RID pairs and the original data the pair of similar records are

generated.

International Journal of Innovations in Engineering and Technology (IJIET)

102

Volume 7 Issue 4 December

2016
ISSN: 2319 - 1058

Figure 2 Framework of Parallel set Similarity Join

Figure 2 depicts the functional block diagram of Parallel set Similarity Join. The three stages based on

self-join can discussed further in detail:

Stage 1: Token Ordering

We consider two possible alternate methods for ordering the tokens in the first stage. Both methods

take as input the original records and produce a list of the tokens that appear in their join-attributes ordered

increasingly by their global frequency of usage.

A.Basic Token Ordering (BTO):

Basic Token Ordering (“BTO”) depends on two MapReduce phases. The frequency of each token is

computed in the first phase then in the second phase the tokens are arranged based on their frequencies. In the

first phase, the map function receives as input the original records. For each record, the function extracts the

value of the join attribute and tokenizes it. The second phase uses MapReduce to arrange the pairs of tokens and

frequencies from the first phase [4]. The Map function swap the input keys and values so that the input pairs of

the reduce function are arranged based on their frequencies. This phase uses accurately one reducer so that the

result is a completely ordered list of tokens.

B.One-Phase Token Ordering (OPTO):

The list of tokens can be much smaller than the original data size in OPTO [10]. We can sort the tokens

explicitly in memory instead of MapReduce, The reduce function in One-Phase Token Ordering gets as input a

list of tokens and their limited counts. For each token, the function computes its whole count and stores the

information.

Stage 2: RID-Pair Generation

The second stage of the join, called the “Kernel”, which scans the original input data and extracts the

prefix of each record using the token order computed by the first stage. In general the list of distinct tokens is

much smaller and grows much more slowly than the list of records. We thus assume that the set of tokens fits in

memory. Based on the prefix tokens, we extract the RID and the join-attribute value of each one record, and

then distribute these record projections to reducers. The join-attribute values that share at least one prefix token

are verified at a reducer.

Approaches to find out the RID pair of similar records:

A. Basic Kernel (BK): Computation of similarity in join attribute values can be calculated by nested

loop approach. The map function fetches RID and join attribute values after taking out the original data , then

this function can tokenizes the join attribute and calculates the prefix length. Finally it uses individual or group

token routing strategy to produce output pair.

B. Indexed Kernel (PK): This function uses already availability set of similarity join algorithm like

PPJoin+ to find RID pairs of similar records. Hence it is known as PPJoin+ Kernel (PK).

Stage 3: Record Join

International Journal of Innovations in Engineering and Technology (IJIET)

103

Volume 7 Issue 4 December

2016
ISSN: 2319 - 1058

In the final stage of the algorithm is to use the RID pairs generated in the second stage to join their

records and there are two approaches used in this stage. The main idea is to first fill in the record information for

each half of the pair and then use the two halves to build the complete record pair. The two approaches differ in

the way the list of RID pairs is presented as input. In the first approach, called Basic Record Join (“BRJ”), the

list of RID pairs is treated as a normal MapReduce input [6], is presented as input to the map functions. In the

second approach, called One-Phase Record Join (“OPRJ”), the list is broadcast to all the maps and loaded before

reading the input data. Duplicate RID pairs from the previous stage are eliminated in this stage.

IV. MGJOIN FRAMEWORK

Several algorithms were projected for string similarity join. They adopt a two stage filter and refine

strategy in identifying similar string pairs:

1. Candidate pair can be generated after traversing the inverted

 index.

2. The candidate pair can be verified by calculating the similarity.

Most of the algorithms suffer from few pruning power, or they acquire too much calculations are

needed to improve the pruning power. Hence a multiple prefix filtering method based on global ordering is

projected called as MGJoin. MGJoin is based on multiple prefix filtering technique [10]. It applies various

global orderings in a pipelined manner.

V. MASSJOIN FRAMEWORK

MASSJOIN is a scalable MapReduce-based string similarity join algorithm. This algorithm can support

both set-based similarity functions and character-based similarity functions [7]. MapReduce contains two most

important stages: the filter stage and the verification stage. MassJoin algorithms working principles involves the

following steps:

A. Signature Generation

The character based similarity function depends on given edit-distance threshold and generates a fixed

number of signatures. Therefore in set-based similarity functions, the number of signatures depends on the string

lengths [8]. The signatures can be generated in MassJoin algorithm. MassJoin algorithm has two methods for

signature generation one is Position-aware method and another one is Muti-match-aware method [8]. These two

methods can be used simultaneously called as hybrid method. This approach will decrease the number of

signatures generated simultaneously avoiding false negatives.

Figure 3 MassJoin Framework
A. Filter Stage

In this filter phase the candidate pairs can be generated by using the filter techniques .The two string r

and s must share a signature if two strings r and s are similar. We use the signatures as keys and the strings as

values in the Map Phase. The two similar strings must share a same key, that must be shuffled to the similar

reduce task. To reduce the transmission cost a key-value pair taken as input.

B. Verification Stage

In the verification stage, the candidate pairs generated from the filter stage can be verified. Candidate

pairs generated from the filter stage can be verified in this stage. It provides with a two-phase method to handle

two important goals; first to eliminate duplicates which arise due to two strings sharing multiple signature and

second to replace the id in candidate pair with real string.

TABLE 1 COMPARITVE ANALYSIS OF PARALLEL SET SIMILARITY JOIN, MGJOIN AND MASSJOIN

String Similarity

Join

Algorithms

Basic Technique

Supportin

g

Similarity

Function

Join

Supported

No. of

Tokens

Performance

International Journal of Innovations in Engineering and Technology (IJIET)

104

Volume 7 Issue 4 December

2016
ISSN: 2319 - 1058

1. Parallel Set-

Similarity Join

Three stages-token

allotment ,

Pairing and

Record join

Set based

similarity

function

Self Join and

RS Join

Single

Token

First

approach,

Low

pruning

power,

Skewed

problem

2. MGJoin

Multiple

global

ordering

Set based

similarity

function

Multiple Join

Pipelin

ed

Tokens

Outperforms

PPJoin+

other state

of the art

methods

3. MassJoin

Filter and

Verification

Character

Based and

Set

based

Self-Join

Multip

le

High

pruning

power

and

Light

weight

filters

VII. CONCLUSIONS

This paper provides a broad survey of existing string similarity join algorithms, including MassJoin, MGJoin

and Parallel set similarity join. The Parallel set similarity join is a three phase based method. It considers a

single token as key which leads to low pruning power and skewed problem. The MassJoin algorithm looks out

the shortcoming faced by preceding two approaches efficiently. It implements character based in addition to set

based similarity function which is suitable for short strings as well as large documents. It also implements the

merging technique and light weight filters, that improves the performance of MassJoin significantly over

MGJoin and Parallel set similarity joins.

REFERENCES

 [1] Jiaheng Lu , Chunbin Lin , Wei Wang , Chen Li and Haiyong Wang, “String Similarity Measures and

Joins with Synonyms”, SIGMOD’13, June 22–27, 2013, New York, New York, USA.Copyright 2013

ACM 978-1-4503-2037-5/13/06.

 [2] G. Li, D. Deng, J. Wang, and J. Feng, “Pass-join: A partition-based method for similarity joins” ,PVLDB,

5(3):253-264, 2011.

 [3] Younghoon Kim, Kyuseok Shim, “Parallel Top-K Similarity Join Algorithms using MapReduce”, IEEE

28th International Conference on Data Engineering, 2012.

 [4] R. Vernica, M. J. Carey, and C. Li, “Efficient Parallel Set Similarity Joins using MapReduce”, In

SIGMOD,2010, pages 495-502.

 [5] C. Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du and Anthony K.H.Tung, “Efficient and Scalabe Processing

of String Similarity Join” ,IEEE Transactions on Knowledge and Data Engineering, VOL. 25,2013.

 [6] Wei Wang,Jianbin Qin, Chuan Xiao,Xuemin Lin and Heng Tao Shen, “VChunkJoin: An Efficient

Algorithm for Edit Similarity Joins”, JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1,

FEBRUARY 2011

 [7] D. Deng, G. Li, S. Hao, Wang and J.Feng, “MassJoin: A MapReduce-based Method for Scalabe String

Similarity Joins”,ICDE Conference, 2014.

 [8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters”, In OSDI, 2014,

pages 137- 150.

 [9] NikolausAugsten, Michael H Bohlen, “Similarity Joins in Relational Database Systems”, Morgan &

Claypool publishers.

 [10] Yu Jiang, Guoliang Li, Jinhua Feng and Wen-Syan Li,“String Similarity Joins: An Experimental

evaluation”, International Conference on Very LargeDataBases, Vol.7, No.8., 2014.

