
International Journal of Innovations in Engineering and Technology (IJIET)

185

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

Positive Inspection on Web Application
Security Attacks and Vulnerability Detection:

SQLI
K.Naveen Durai, Assistant Professor

Dept. of Computer Science and Engineering
Sri Eshwar College of Engineering Coimbatore, Tamilnadu, INDIA

Dr.K.Baskaran, Associate Professor

 Department of Electrical and Electronics Engineering
Govt. College of Technology Coimbatore, Tamilnadu, INDIA

Abstract- The emergence of the internet in the current decade is enormous and irresistible. The internet users are
passionate and swelling their impulsion in making the state of affairs still down reaching. Their bibliography has been
totally exaggerated. Every minute the web database is hold no more up with huge amount of information. Thus
prolonged habituation sensitized in passwords, credit card numbers, company statistics etc. As a pessimistic and
optimistic collaboration, the attackers make reimbursement with naive information. Beyond the shadow of users are
threatened with malfunctions. Besides the robust embossed Web security mechanisms, culpability glides that tracker
avail oneself of to threaten the information accumulated in the web database. SQL injection (SQLI) and cross site
scripting (XSS) are the vital prey feeding expanse for the web security threats. Proposal on recognize and reveal are
titanic in submission; recognizing the SQLI and revealing the vulnerabilities in the web application. In this paper,
assorted advents
be pertinent to SQLI detection and SQLI prevention are scrutinized and compared.

Keywords – Input sanitization, SQL injection, Content spoofing, Hot Query Bank, Cross site scripting, Vulnerability.

I. INTRODUCTION
How does this SQLI code works? This is literally mentioned as the code injection technique and fully fledged in

illegitimately ingress into the database. The input used to achieve their objective is as inserting characters or
command and that could restrict the query execution. Further, proceeding with the query logic change lets room to
the malevolent exploitation in database. The mentioned is a benchmark in a web application where SQL statements
are mentioned to entree the database.
What synthesizes the leeway for a web application to be hacked? It is the mainly the novice developers. For
exemplification, there is much sophistication in the developing programs (E.g.: java, ASP.NET and PHP) at some
point in the construction and execution of SQL statements. These manifest hacking occurs due to improper
confirmation and authentication.

Concatenating strings that built the dynamic queries in which most of the web applications depends on. Before
the execution of the queries, users have to initially enter in the different input sets through which a query sets will be
generated and executed. This facilitates the hackers much and more. All this has taken place in wide range as we
are using the dynamic pages. To avoid the web application to be the reason behind this SQLI attacks, the better
solution is using the stored procedure instead. It has own shortcoming of inappropriate usage will encourage them
to be violated.

International Journal of Innovations in Engineering and Technology (IJIET)

186

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

II. WEB APPLICATION ARCHITECTURE
We are all familiar in an aspect that the web application is the one that is running in a web browser as a

program. It basically runs under a three-tier construction. As per the request from the browser the presentation tier
is shown in Fig., 1 that is sent to a web browser.

Figure 1.Web Application Architecure

1) Presentation Tier:
This is presumed as a Graphical User Interface (GUI). HTML, Flash, Java script, etc are those that directly

coordinates and communicates with the user and are the part of this presentation tier. The users input are received
and the processed output is displayed to the users. Web browser analyzes this tier.

(2) CGI Tier:

The main agenda of this tier is to process the input data and propel the result into the database tier. This is
also mentioned as Server Script Process. This is intermediate level tier process as it placed in between the
presentation and database tiers. The actual process is, stored data are sent from the database tier to this phase of the
tier and again the data are passed on to the presentation tier for users review. This is an all rounder phase where all
the data processing of the web applications are taken place. Supported languages are: JSP, PHP, ASP, etc.

(3) Database Tier:

The task of this last phase is, storing, managing and retrieving all the data of a web application. Their main
drawback relies upon the transformation of data from this phase to CGI tier phase is carried over without any
security check. This gives more possibilities in malfunctions as data revealing is trouble-free once CGI Tier
tracking is succeeded.

III. SQLI CAUSES
A. Absence of checks

There might be several reasons for the SQLI and one of the most prominent among those is usually the
inputs used in the SQL statements that too without checking. Whenever the input is supposed to be checking in
regards to its relevancy. Else, there comes an opening for the attackers who could easily harm and hack using the
hazardous character inputs that are certainly irrelevant to the input that we are looking for.

$query = “SELECT info FROM user WHERE name =‘$_GET[“name”]’ AND pwd =
‘$_GET[“pwd”]’”;

Here reflect on a case, when the input parameter name value is noted as x’ OR ‘1’=‘1, when the WHERE
clause condition is,

“WHERE name = ‘x’ OR ‘1’=‘1’ AND …”

This leaves room to the hackers to hack the user information and also without valid account. TRUE will be
the evaluation status and the attackers will retain access portability.

International Journal of Innovations in Engineering and Technology (IJIET)

187

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

B. Insufficient data type checks.
Meanwhile, whilst the construction of the SQL statements, it is foremost prominent that a developer must

be in utmost concern in checking the data types and the absence of doing this will absolutely end up in a vulnerable
web application. Here is a sample elaboration. To overcome all this shortcomings, developers are most probably
making use of sum of the sophisticated functions that are used in such every programming languages, such as
sanitization functions (sanitizes the input parameters even before used in SQL statements). However, such usages
become nullified once the input that are to be accessed are: non-text-based data types or numeric data and there
occurs a necessity for is_numeric() functions for checking principles and thus preventing SQLIAs.

C. Absence of proper delimiters.

Delimiters are the core to pin point the input’s data type, so they are supposed to be used properly while a
query is with input strings and are constructed dynamically. Sample shown below is about SQL statement that
indicates input string but the case is that the delimiters are not included here in this PHP code
$name = mysql_real_escape_string ($_GET [“name”]);
$query = “SELECT info FROM user WHERE name = $name”;

Here for instance, the attacker will be able to easily deceive the input sanitization functions using the
alternate coding, when the database server automatically enables the automatic type conversion function. Consider,
when the hackers encode into the parameter “name” the HEX string as
0x270x780x270x200x4f0x520x200x310x3d0x31, it will be instantly converted as “varchar” value (result: string
‘x’ OR 1=1) in the database parser and this will be never and ever be detected by any of the program’s escaping
function(s) as they are special characters encoded in the HEX string

D. Improper parameterized queries or stored procedures.

We may also discuss about one more criteria that many are not even aware of. That is, SQL injection may
be pull off with non-parameterized inputs; when the stored procedures or parameterized query strings acknowledge
them.
Shown down is a PHP code:
$query = “SELECT info FROM user WHERE name =
?”.“ORDER BY ‘$_GET [“order”]’”;
$stmt = $dbo->prepare ($query);
$stmt->bindParam(1, $_GET[“name”]);
$stmt->execute ();
Thus taking into account, when an attacker could not precede the SQLIA with the parameter “name” he/she may
sustain it through parameter “order”, as it is not parameterized. ASC, DROP TABLE user are the query that reveal
the hackers to infuse malicious queries to the original ones.

IV MITIGATING SQL INJECTION ATTACKS
To mitigate the SQL injection attacks, there are 10 ways. They are:

1. Suspect everything: never be culminated. Always verify and sanitize any of the user-submitted data as if
they are iniquities.

2. Avoid dynamic SQL wherever possible: Instead make use of stored procedures, prepared statements or
parameterized queries wherever applicable.

3. Patch up and update: once we practically apply the update and patching, the hackers will not be easily able
to hack the database using their vulnerabilities in the applications. As they are highly abused using SQL
injection.

4. Firewall: this is one of the best remedy to filter the calumniated data. The application firewall (WAF) may
be appliance or software based. Considerably when they are good, new data could be added wherever
likelihood appears and they might always possess a complete set of rules that are parallel default. Even

International Journal of Innovations in Engineering and Technology (IJIET)

188

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

before the patch available it becomes the apt responsibility of the WAF to inherit security against the
vulnerabilities.

5. Attack surface reduction: have some considerations. If you could cork surely in a preference to avoid some
of the database functionality from prevention, then go for it. Consider an example, a hacker could be
gained indeed of the xp_cmdshell extended stored procedure that are abbreviated in the MS SQL as it
generates a Windows command shell and during execution they passes a string either. Whereas, the
privileged security is same in both Windows process and SQL Server service account.

6. Proper privilege usage: this is of course a very valuable criterion. Ever and never unnecessarily entail your
admin-level privilege until and unless a need arises. As this could obviously limit the enhancement of the
attackers themselves.

7. Despite of all; “Secret”: maintain certain scenarios intensely. When you hash the connection strings, other
off the record data and passwords always remember to keep a word in yourself that your application is
totally unsafe.

8. Be precisely informative: the error messages are the actual prey feeders for the hackers who could
effortlessly knot up with database architecture. Minimum information is preferably prescribed. To fool out
with the attacker, it is advisable to endorse the usage of the "RemoteOnly" customErrors mode (or
equivalent) that will show up the error messages in the local machine.

9. Basics are ought unforgettable: password change is extensively recommended when it is done regularly as
this is one of the practically safe and sensitive ways.

10. Better software purchase: before software delivery, it is the utmost conscientiousness of the code writer to
check out following two submissions. I) security flaws in the customized application are to be fixed and ii)
codes are to be checked perfectly.

V METHODOLOGIES USED IN DETECTING SQLI
A. Static analysis

In the Static analysis mentioned here, it is the mere responsibility of the SQL query statements to be
analyzed and in that way it could spot and put a stop to SQLI. Its process flows out in such a way that: i) scanning
the application, ii) analyzing the information flow and iii) detecting the code segment that might cause harm to the
SQLI. If any of the code is found to be vulnerable then that code and the web application are to be rewritten. But
the authentic and crucial content of the Static analysis relies upon certifying the user input type and reducing the
percentage of SQL injection attacks and not to detect them. Taking into consideration, JDBC-Checker [1] is
probably making use of the Java String Analysis (JSA) library. Its functionality is dynamic validation of user input
and preventing the
SQL injection hits. This might not be the case when the attacker himself/herself could give accurate input data type
or syntax. One of the familiar cores that use static analysis method is Wassermann [2] and it is mingle of automated
reasoning. This method is not up to the mark in the SQL injection attack detection and its background is on
tautologies.

B. Dynamic analysis

The operation task of Dynamic analysis is; analyzing on every input has been undertaken on the web
application and its http response. This analyzing process is termed out as scanning. Scanning is a prolonged process
that sends out all the possible input into the target and thus receives the responses. The first and foremost privileged
aspect of this dynamic analysis is that, even when none of the changes are accumulated to the web application it will
explicitly locate the vulnerable code segments. SQLI attacks are protected using Sania [3] as:

1) Possible vulnerabilities are analyzed using a static approach. Primarily, the normal SQL queries are
collected between the client and web applications and web application and database.

2) Vulnerable code segment cab be disclosed and established through the generation of SQLI attack codes.
3) Once being attacked by the SQLI attack codes the generated SQL queries are collected.
4) Comparison is been carried out between the normal and attacked SQL queries.

International Journal of Innovations in Engineering and Technology (IJIET)

189

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

5) The queries that are been attacked is found to be succeeded or not only after analyzing them through Parse
tree.

From the determinations it well implicated that this sounds better than the HTTP response method.
Nevertheless, they are all predefined. When new SQLI attack types are exposed they become incapably inefficient.
This method becomes advantageous because web application code will not even require any modifications. Thus
concluded and convinced that the vulnerabilities are something that is ought to be fixed manually and not through
predefined attack codes.

C. Hybrid approaches

There comes another approach where both the static and dynamic approaches are clubbed up altogether and
they are termed out as hybrid approach. This pattern is boomed out to become a conclusion for the shortcoming
attained in the above two approaches. But it is enduringly and everlastingly considered to be inefficient as of the
exorbitant utilization of system resources.

D. Hot Query Bank approach

In the eternity to improvise the ability of the SQLI detectors, [4] a terminology is introduced so called hot
query bank. The detected queries that are analyzed and legitimately identified are been recorded here. This results
in the trouble-free factor that, once a set of genuine queries are built it then the process of checking the queries
becomes nullified thus saving the system resources and improvising the system performance

 Figure 2. Hot Query;s Sytem Architecture

Above mentioned (Fig.2) is the hot query’s system architecture. It illustrates that constantly the execution

query will be sent from the web application to the HQB. Then the previously mentioned checking process (hot
query) will be performed. If the query is already proved to be legitimate, they are then executed into the database.
If the query is coming up for the first time, then their legitimacy is checked by the SQLI detector and the process
will be taken place in the HQB as per their output.

This also poses some of the negative aspects: i) malicious query(s) ratio ii) hot queries updating time iii)
sliding window’s size and iv) system’s performance is notably effected through the support parameter. Different
detectors have shown the percentage of 45 as the improvised system performance. Bearing in mind the downside,
these bank supports only the before now surviving SQLI detectors as they are in necessitate of system performance
progression and they do not work on the standalone detectors. In addition, real web application environment has
ever and never validated this design and hence it entails a standard interface for collaboration.

E. Removing SQL query attribute value

Removing the SQL query attribute value for SQLI detection by merging the static and dynamic analysis is a
novel method suggested in [5]. Most probably the dynamic SQL queries are generated using the input submitted by
the user and they are declared as the attribute value. Function f does the task of removing the SQL query attribute

International Journal of Innovations in Engineering and Technology (IJIET)

190

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

value and it is applicable to both the static (by now examined legitimate queries) and dynamic (formed dynamically
through attribute values) queries. Though the dynamic queries are the ones that are to be examined very precisely;
function f is applicable to both. When the SQL query attribute values are removed, a logical exclusive operation
will be executed and the result will be considered to be relevant for the dynamic query when it is zero. Else, the
dynamic query will not be considered as legitimate anymore. This is one the accurate, effective and simple method
in detecting SQLI attacks. Besides, cross site scripting (XSS) cannot be perceived through this method.

F. Mining input sanitization pattern

The incompetency that is presented in the input sanitization mechanism is compensated through a new
method and is suggested in [6]. Input sanitization code patterns are characterized through a set of static code
attributes and this is proposed via this method. Reflection of the static code attributes are constructed in the due
course of the vulnerability prediction model. Sink i.e., a set of query statement are classified as vulnerable or non-
vulnerable using the classification algorithm.
Prediction model: i) Data preprocessing

Totally 21 static code attributes (18 are numeric) is used in this particular method. The min-max method
that relies in maintaining the attribute range to be within zero to one [0, 1] for normalization is executed as the
numeric attributes will always possess different data distribution. Thus, no biasing will be undergone by the
classifiers headed for some of the attributes.
ii) Data reduction

Sanitization code pattern is something to be distinguished and this can be completed only through Data
reduction as they advance the attributes relevancy. Whilst comparing and considering the characterizing the code
pattern using the static attribute need not be most effective. Instead, it could be redundant and irrelevant. Now how
could one rank the relevancy considering the features? This is done using the chi-square, gain, symmetrical
uncertainty and gain ratio. This data reduction enhances the performance of the classifier further.
iii) Classification

These classifiers are absolutely sophisticated ones as it undergoes Multi-layer perception and this is done
immediately after data preprocessing and data reduction. This is deeply brainy as in the IQ of a human and an
outstanding classification done in the sink where the vulnerable or non-vulnerable to the SQLI are classified. These
coded are detected in the statement level and not in software level or program level as other detectors. Spaced out
from that, the static code attributes are collected easily and it seems to be its tremendous advantage. This could be
segmented as an interchange for any of the SQLI detectors or else this input sanitization mechanisms tie up with
them. The false alarm rate is tremendously low when a test have been undertaken in eight different web applications
Across application is not predicted in this method.

G. Intelligent detection using multi agent system architecture

Blocked SQLI are detected through data mining and this multi agent system architecture is suggested in [7].
‘Layers’ this is structure of the functionalities here and it is totally a distributed and hierarchical strategy. Speaking
about the task; visualization, data gathering and data classification are the functions that are performed through one
or many agents in each and every layer. The two available key agents to spot out and slab in the SQLI are: i) a
visualize agent and ii) a classifier agent
i. Classifier Agent

Case based reasoning mechanism is integrated here. The SQL query statements that are purely in the
relation with the SQLI attacks exhibits its history and experience retained. This is termed out as a case. The three
different that a case may acquire are: i) initial problem in the web application is described ii) thus obtained problem
should possess a solution right? And that is obtained through ‘solution’ where there are sequential steps as the
recover to the problem described and iii) finally step is showing off the state once the problem has been recovered.

Following are the steps in a case based reasoning
1. Retrieve

International Journal of Innovations in Engineering and Technology (IJIET)

191

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

Retrieving from the memory; Query category attributes identifies the relevancy immediately after the advent of the
SQL query. Models that are related to the relevancy are recovered only based on the identified cases.
2. Reuse
i) Retrieved cases and ii) recovered models are the two inputs activation function f is used by neural networks where
the two inputs are given. Output is normalized and it ranges from [0.2, 0.8].
0.2 - non-attack
0.8 - attack
3. Revise
The suspicious case is evaluated when the output values relies in the range between [0.35, 0.6]. Human expert
system reviews all such cases and detection mechanism’s precision is improvised.
4. Retain
Bearing in mind about further classification the newly classified cases are updated and reconstructed here.
5. Visualizer agent
The human expert system that is involved in analyzing the apprehensive queries should be more sophisticated and
hence the purpose of the visualizer agent. The classification of SQLI attacks is completed here and it is the primary
task undertaken into account.
Necessitation for the visualization techniques

 Logical and spontaneous analyzing of data is commenced in Visualization.
 Simplified representation becomes promising even for highly noisy, heterogeneous and complex data

through Visualization.
 Visualization affords the fastest detection mechanism.

Formerly classified queries are visualized and tracks out the highly similarity with the suspicious query and this trap
is performed by the visualizer agent. This would help further accurate classification. The robustness, flexibility and
accuracy of SQLI detection mechanism is improved with means to the combination of the classification algorithm
that are used in the visualizer agent and case based reasoning. To err is human. So, wherever suspicious queries are
analyzed they are damn enough possibilities of error in the detection process. As the process is not thoroughly
automated they are concluded to be unsuitable for dynamic analysis.

VI. CONTENT SPOOFING
Though the above illustrated methodologies act very well in detecting and preventing the cross site

scripting (XSS) and SQLI, they are not designed in a way to work out for content spoofing. Content spoofing, is
also phrased as virtual defacement or content injection. This is even well-defined while termed out as attack; as this
targets the user and using the injection vulnerability that exploitation is done in the web application. All the
mischievous facts are achieved only when an application fails in handling the data supplied by the users. It is then
the hackers who enters into the scene and take in hand the worse situation and make use of it by supplying the
malicious data to the user with the name of the adorable domain. All this can be abbreviated through passing the
parameter value.

VII. COMPARISON OF VARIOUS SQLI DETECTION METHODOLOGIES

Table -1 Comparison Table

Parameters/methods Hybrid
approach Hot Query Bank

SQL query
attribute
removal

Mining input
sanitization

pattern

Multi agent
system

architecture
Whether Uses machine

learning? X X X

Is Modification of code
necessary? X X X X

Can be used as a standalone X

International Journal of Innovations in Engineering and Technology (IJIET)

192

Volume 7 Issue 4 December 2016 ISSN: 2319 - 1058

detector?

Does Improve performance? X X
Does Improve accuracy? X X

If Uses visualization
techniques? X X X X

Can detect XSS? X X X X
Does Consider content

proofing attack? X X X X X

VIII CONCLUSION

This paper, illustrates the survey that brief out the floating methodologies that are used in the SQLI

detection. As portrayed, they are detailed in analyzing the merits and demerits. HQB elaborates the definition that
it is one outstanding detectors as it possesses increases performance, however, the classifier accuracy is not
increased. Though the detectors concentrate on the aspects such as: i) SQL query attribute removal, ii) multi agent
system architecture and iii) mining input sanitization pattern to improvise the classifier accuracy, they fall short in
detail analysis about the SQL query which leaves room in the deficiency of the detector performance. All these
compensations are nullified when the parenthesis are content spoofing. In the upcoming days, we are planning to
assimilate both visualizer agent and the HQB and data mining will be used as a method in SQL query classification.

This research succession will deliver us an implementation of outstanding detector in a way or other. This
will be to the image for find out watermark image.

REFERENCE
[1] C. Gould, Z. Su, P. Devanbu, JDBC checker: a static analysis tool for SQL/JDBC applications, in: Proceedings of the 26th International

Conference on Software Engineering, ICSE, 2004, pp. 697–698.
[2] G. Wassermann, Z. Su, An analysis framework for security in web applications, in: Proceedings of the FSE Workshop on Specification and

Verification of Component-Based Systems, SAVCBS, 2004, pp. 70–78.
[3] Y. Kosuga, K. Kernel, M. Hanaoka, M. Hishiyama, Y. Takahama, Sania: syntactic and semantic analysis for automated testing against SQL

injection,in: Proceedings of the Computer Security Applications Conference 2007, 2007, pp. 107–11.
[4] Yu-Chi Chung, Ming-Chuan Wu, Yih-Chang Chen, Wen-Kui Chang, A Hot Query Bank approach to improve detection performance

against SQL injection attacks, Elsevier, Computers & Security Volume 31, Issue 2, March 2012, Pages 233–248.
[5] Inyong Lee , Soonki Jeong , Sangsoo Yeo, Jongsub Moon, A novel method for SQL injection attack detection based on removing SQL

query attribute values, Elsevier, Mathematical and Computer Modelling, Volume 55, Issues 1–2, January 2012, Pages 58–68.
[6] Lwin Khin Shar , Hee Beng Kuan Tan, Predicting SQL injection and cross site scripting vulnerabilities through mining input sanitization

patterns, Elsevier, Information and Software Technology, Volume 55, Issue 10, October 2013, Pages 1767–1780.
[7] Cristian I. Pinzón , Juan F. De Paz , Álvaro Herrero , Emilio Corchado , Javier Bajo , Juan M. Corchado , idMAS-SQL: Intrusion Detection

based on MAS to Detect and Block SQL injection through data mining, Elsevier, Information Sciences, Volume 231, 10 May 2013, Pages
15–31.

[8] W. G. Halfond, J. Viegas, and A. Orso, “A Classification of SQLInjection Attacks and Countermeasures,” in Proc. of the International
Symposium on Secure Software Engineering, March 2006.

[9] Verizon 2010 Data Breach Investigations Report, “http://www.verizonbusiness.com/resources/reports/rp 2010- databreach- report en
xg.pdf.”

[10] Web Application Security Statistics, http://projects.webappsec.org/w/page/13246989/ “Web Application Security Statistics.”
[11] M. Cova, V. Felmetsger, and G. Vigna, “Vulnerability Analysis of Web Applications,” in Testing and Analysis of Web Services, L. Baresi

and E. Dinitto, Eds. Springer, 2007.
[12] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing confidentiality and integrity in web applications,” in USENIX’07: Proceedings of

the 16th conference on USENIX security symposium, 2007.
[13] Steve Friedl's Unixwiz.net Tech Tips , http://www.unixwiz.net/techtips/sql-injection.html , “SQL Injection Attacks by Example”
[14] WhiteHat Security’s annual study, http://resources.infosecinstitute.com/content-spoofing/, “Content Spoofing“B. Corona, M. Nakano, H.

Pérez, “Adaptive Watermarking Algorithm for Binary Image Watermarks”, Lecture Notes in Computer Science, Springer, pp. 207-215,
2004.

