An Analogy of Burr Type III and Pareto Type II using SPRT

CH.Smitha Chowdary Scholar, Department of Computer Science, Krishna University, Andhra Pradesh, INDIA-521001.

Dr.R.Satya Prasad

Associate Professor, Department of computer science, Acharya Nagarjuna University, Andhra Pradesh, INDIA-522502.

Dr.R.Kiran Kumar

Asst. Professor & Head of Department of Computer Science,, Krishna University, Andhra Pradesh, INDIA-521001.

Abstract- Software reliability is viewed as one of the key attributes of software quality, an important quality metric for any developed software. The aim is to statistically measure, ensure and predict the reliability of the software product and is accessed by the use of any statistical model, whose unknown parameters are estimated from the available software failure data. Researchers developed Sequential Probability Ratio Test (SPRT) to judge upon reliable/unreliable software based software reliability techniques. An analogy between Burr Type III and Pareto Type II with SPRT mechanism based on time domain data of Non Homogenous Poisson Process (NHPP) is presented here.

Keywords – Software Reliability, Sequential Probability Ratio Test, Maximum Likelihood Estimation, Burr Type-III, Pareto Type-II.

I. INTRODUCTION

Software reliability is defined as "probability of fault free operations provided by the software product under consideration over a specified period of time in a specified operational environment" [1], assessment of which needs effective tools and mechanisms. Statistical testing is a mechanism that represents a well-founded approach to the estimation of software reliability. Classical Hypothesis Testing of statistical testing is performed with volumes of data without analysis. The use of classical testing strategies in the application of software reliability growth models may be difficult and reliability predictions can be misleading. However statistical methods can be successfully applied to the failure data [2]. Sequential analysis or sequential hypothesis testing is statistical analysis where the specimen size is not determined at the earlier stage, but the data are assessed, while they are being collected and when the prominent results are noticed, the next sampling is stopped in accordance with a predefined stopping rule. In this way a conclusion may be acquired in an earlier stage than it would be with more classical hypothesis testing or assessment at consequently lower financial and/or human cost [3]. A best of sequential methods which is implemented to test statistically a hypothesis, is that a test procedure can be developed that requires on average a small number of observations which equally test the reliability of the procedure based on a predetermined number of observations [4] [5]. Stieber's observations are demonstrated by applying the well-known Sequential Probability Ratio Test (SPRT) of Wald [6] for a software failure data to detect unreliable software components and compare the reliability of different software versions which is a way towards managing the process of reliable software, instead of crafting unreliable software.

Analysis of software reliability requires software failure data. The failure data are of two types: the time-domain data and interval-domain data, where the former records the independent times at which the failure has occurred and

the latter counts the number of failures occurring during a fixed time period. With the existing reliability models of software, time-domain data provides better accuracy in the estimation of parameters, but involves more data collection efforts [7]. The stochastic process probability equation that represents the failure occurrence is given by a homogeneous Poisson process with the expression.

$$P[N(t) = n] = \frac{[\lambda t]^n}{n!} e^{-\lambda(t)}$$
⁽¹⁾

This paper describes an analogy of Burr Type III and Pareto Type II for detecting reliable software based on the SPRT, using Maximum Likelihood Estimation (MLE) of parameter estimation. The Wald's SPRT procedure is a method that can be used to distinguish the software under test into one of the two categories like reliable/unreliable, pass/fail and certified/uncertified [8]. SPRT is the optimal statistical test that makes the correct decision in the shortest time among all tests that are subject to the same level of decision errors [9]. It is used to detect the fault based on the calculated likelihood of the hypotheses. We considered a popular software reliability growth model, Burr Type III for which the principle of Stieber [2] has been adopted, which helped in detecting whether the software is reliable or unreliable in order to accept or reject the developed software, later Burr Type III and Pareto Type II model results are compared in order make a decision on which model has better performance.

The theory of Burr Type III and Pareto Type II of Software Reliability Growth Models (SRGM's) and Sequential Test of SPRT for Burr type III and Pareto Type II Software Reliability Growth Model are illustrated in section II. Application of the decision rule to detect the unreliable software with reference to the Software Reliability Growth Model Burr Type III and Pareto Type II is depicted in section III. The conclusion is provided in section IV.

II. SEQUENTIAL TEST FOR BURR TYPE III AND PARETO TYPE II

A. Burr Type III and Pareto Type II SRGM's.

An SRGM is a mathematical relationship between time span of testing or using the software and the cumulative number of faults that are detected and repaired. Burr Type III and Pareto Type II are SRGM's that analyze the reliability of software systems using the Time Domain Data. Non Homogeneous Poisson Process (NHPP) is one of the important classes of SRGM used due to its mathematical traceability and wide applicability. Mean value function for the model parameters of Burr Type III and Pareto Type II are determined using maximum likelihood function through which software reliability can be estimated [10][11].

B. Sequential Test for Software Reliability Growth Models.

For any Poisson process, the expected value of $N(t) = \lambda(t)$ called the average number of failures experienced in time 't', is also called the mean value function of the Poisson process. In other way if we consider the general function of a Poisson process (not necessarily linear) m(t) as its mean value function then probability equation of a such a process is[12]

$$P[N(t) = Y] = \frac{[m(t)]^{y}}{y!} \cdot e^{-m(t)}, y = 0, 1, 2, ----$$

Depending on the forms of m(t) we get various Poisson processes called NHPP[13], for the Burr Type III model and Pareto Type II model. The respective mean value functions are given as [14][15]

$$m(t) = a\left[1 + t^{-c}\right]^{-b}, \quad m(t) = a\left[1 - \frac{c^{b}}{\left(t + c\right)^{b}}\right]$$

Volume 8 Issue 3 June 2017

103

$$P_{1} = \frac{e^{-m_{1}(t)} \cdot [m_{1}(t)]^{N(t)}}{N(t)!}$$
$$P_{0} = \frac{e^{-m_{0}(t)} \cdot [m_{0}(t)]^{N(t)}}{N(t)!}$$

 $m_1(t)$, $m_0(t)$ here represent the mean value function for the stated parameters depicting reliable software and unreliable software. The mean value function m(t) consists 'a', 'b' and 'c' parameters which are estimated through Maximum Likelihood Estimation (MLE). Two specifications of NHPP for b here, say b_0 , b_1 with the condition $b_0 < b_1$ and two specifications of c here, say c_0 , c_1 with the condition $c_0 < c_1$ are considered. For the models considered, m(t) at b_1 is said to be greater than b_0 and m(t) at c_1 is said to be greater than c_0 and this is denoted symbolically as $m_0(t) < m_1(t)$. The implementation of SPRT procedure for the models is illustrated below. [14]

System is said to be accepted as it is reliable if

$$\frac{P_{1}}{P_{0}} \leq B$$

i.e,
$$\frac{e^{-m_{1}(t)} \cdot [m_{1}(t)]^{N(t)}}{e^{-m_{0}(t)} \cdot [m_{0}(t)]^{N(t)}} \leq B$$

i.e
$$N(t) \leq \frac{\log\left(\frac{\beta}{1-\alpha}\right) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)}$$
(2)

System is said to be rejected as it is unreliable if

$$\frac{P_1}{P_0} \ge A$$

i.e.,
$$N(t) \ge \frac{\log\left(\frac{1-\beta}{\alpha}\right) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)}$$
(3)

Continue the test procedure as long as it is between

i.e.,
$$\frac{\log\left(\frac{\beta}{1-\alpha}\right) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)} < N(t) < \frac{\log\left(\frac{1-\beta}{\alpha}\right) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)}$$
(4)

Volume 8 Issue 3 June 2017

104

Substituting the mean value function of the Burr Type III in appropriate expressions of sequential test, we get the respective decision rules that are given in the following lines [14].

Acceptance Region of Burr Type III:

i.e.,

i.e.,

i.e.,

$$N(t) \leq \frac{\log\left(\frac{\beta}{1-\alpha}\right) + a\left(\left(1+t^{-c_1}\right)^{-b_1} - \left(1+t^{-c_0}\right)^{-b_0}\right)}{\log\left[\frac{\left(1+t^{-c_1}\right)^{-b_1}}{1-\alpha}\right]}$$
(5)

Rejection Region of Burr Type III: $\left[\frac{1}{\left(1+t^{-c_0}\right)^{-b_0}}\right]$

$$N(t) \ge \frac{\log\left(\frac{1-\beta}{\alpha}\right) + a\left(\left(1+t^{-c_1}\right)^{-b_1} - \left(1+t^{-c_0}\right)^{-b_0}\right)}{\log\left[\frac{\left(1+t^{-c_1}\right)^{-b_1}}{\left(1+t^{-c_0}\right)^{-b_0}}\right]}$$
(6)

Continuation Region of Burr Type III:

i.e.,
$$\frac{\log\left(\frac{\beta}{1-\alpha}\right) + a\left(\left(1+t^{-c_{1}}\right)^{-b_{1}} - \left(1+t^{-c_{0}}\right)^{-b_{0}}\right)}{\log\left[\frac{\left(1+t^{-c_{1}}\right)^{-b_{1}}}{\left(1+t^{-c_{0}}\right)^{-b_{0}}}\right]} < N(t) < \frac{\log\left(\frac{1-\beta}{\alpha}\right) + a\left(\left(1+t^{-c_{1}}\right)^{-b_{1}} - \left(1+t^{-c_{0}}\right)^{-b_{0}}\right)}{\log\left[\frac{\left(1+t^{-c_{1}}\right)^{-b_{1}}}{\left(1+t^{-c_{0}}\right)^{-b_{0}}}\right]}$$
(7)

Substituting the mean value function of the Pareto Type II in appropriate expressions of sequential test, we get the respective decision rules that are given in the following lines [15].

Acceptance Region of Pareto Type II:

$$N(t) \leq \frac{\log\left(\frac{\beta}{1-\alpha}\right) + a\left[\frac{c_0^{\ b_0}}{\left(t+c_0\right)^{b_0}} - \frac{c_1^{\ b_1}}{\left(t+c_1\right)^{b_1}}\right]}{\log\left[\frac{1-\frac{c_1^{\ b_1}}{\left(t+c_1\right)^{b_1}}}{1-\frac{c_0^{\ b_0}}{\left(t+c_0\right)^{b_0}}}\right]}$$
(8)

Rejection Region of Pareto Type II:

Volume 8 Issue 3 June 2017

$$N(t) \leq \frac{\log\left(\frac{1-\beta}{\alpha}\right) + a\left[\frac{c_0^{\ b_0}}{(t+c_0)^{b_0}} - \frac{c_1^{\ b_1}}{(t+c_1)^{b_1}}\right]}{\log\left[\frac{1-\frac{c_1^{\ b_1}}{(t+c_1)^{b_1}}}{1-\frac{c_0^{\ b_0}}{(t+c_0)^{b_0}}}\right]}$$
(9)

i.e.,

Continuation Region of Pareto Type II:

i.e.,
$$\frac{\log\left(\frac{\beta}{1-\alpha}\right) + a\left[\frac{c_0^{b_0}}{(t+c_0)^{b_0}} - \frac{c_1^{b_1}}{(t+c_1)^{b_1}}\right]}{\log\left[\frac{1-\frac{c_1^{b_1}}{(t+c_1)^{b_1}}}{1-\frac{c_0^{b_0}}{(t+c_0)^{b_0}}}\right]} < N(t) < \frac{\log\left(\frac{1-\beta}{\alpha}\right) + a\left[\frac{c_0^{b_0}}{(t+c_0)^{b_0}} - \frac{c_1^{b_1}}{(t+c_1)^{b_1}}\right]}{\log\left[\frac{1-\frac{c_1^{b_1}}{(t+c_1)^{b_1}}}{1-\frac{c_0^{b_0}}{(t+c_0)^{b_0}}}\right]}$$
(10)

For the models adopted, the observation states that the decision rules are solely based on the potency of the sequential procedure (α , β) and the values for the mean value functions namely m₀(t), m₁(t). As per the description of Stieber, the decision rules considered will become decision lines if the mean value function is linear in passing through origin, that is m(t) = λt . The equations (2) and (3) are considered as generalizations for the decision procedure of Stieber based on which the SPRT procedure is applied to live software failure data sets and the results that were analyzed are illustrated in Section III.

III. SPRT ANALYSIS OF LIVE DATA SETS

In this section, the SPRT methodology is applied on five different data sets that are borrowed from pham [16], lyu [17] and sonata [18] software services. The decisions are evaluated based on the considered mean value function. Based on the estimates of the parameters 'b' and 'c' in each mean value function, we have chosen the specifications of $b_0 = b - \delta$, $b_1 = b - \delta$ and $c_0 = c - \delta$, $c_1 = c - \delta$, and apply SPRT such that $b_0 < b < b_1$ and $c_0 < c < c_1$. The estimates are given in the Table 1 for Burr Type III and Table 2 for Pareto Type II.

		Estimated Parameters						
Data sets	Number of samples	а	b	с	\mathbf{b}_0	b 1	C ₀	c ₁
NTDS	26	34.465706	1.763647	1.810222	1.16365	2.36365	1.21022	2.41022
AT&T	22	26.839829	1.65869	1	1.05869	2.25869	0.4	1.6
SONATA	30	79.831359	6.74281	0.60244	6.14281	7.34281	0.00244	1.20244

Table -1 Burr Type III Estimates of a,	h c & specifications of h, h, c, c,
Table -1 Bull Type III Estimates of a,	$b, c \alpha$ specifications of b_0, b_1, c_0, c_1

XIE	30	33.310426	2.270095	1.371974	1.6701	2.8701	0.77197	1.97197
IBM	15	20.624785	1.71163	1.447815	1.11163	2.31163	0.84782	2.04782

Table -2 Pareto Type II Estimates of a, b, c & specifications of b₀, b₁, c₀, c₁

	NT 1	Esti	mated Parame	ter				
Data set	Number of samples	а	b	с	b ₀	b ₁	C ₀	c ₁
NTDS	26	55.01871	0.998899	278.6101	0.648899	1.348899	273	283
AT&T	22	34.636895	0.999859	390.5077	0.649859	1.349859	385	395
SONATA	30	338.720949	0.999958	18851.72	0.649958	1.349958	18846	18856
XIE	30	44.834192	0.999825	365.1518	0.649825	1.349825	360	370
IBM	15	36.914829	0.99953	432.1917	0.64953	1.34953	427	437

Using the specification of b_0 , b_1 , and c_0 , c_1 from Table 1 and Table 2 the mean value functions $m_0(t)$ and $m_1(t)$ are computed for each 't' of the models. Later the decisions are made based on the decision rules specified by the equations (5), (6), (7) of Burr Type III and (8), (9), (10) of Pareto Type II for the data sets. At each 't' of the data set, the strengths of (α , β) are considered as (0.3,0.3) for Burr Type III and refer [11] for Pareto Type II. SPRT procedure is applied on five different data sets and the necessary calculations are given in the Table 3 for Burr Type III and Table 4 for Pareto Type II [11].

Table -3 SPRT analysis for 5 Data Sets with Burr Type III

Data Set	Т	N(t)	R.H.S. of equation(5) Acceptance region (≤)	R.H.S. of equation(6) Rejection region (≥)	Decision
NTDS	9	1	22.169838	2.7909024	ACCEPT
AT&T	5.5	1	3.7988452	2.8430065	ACCEPT
SONATA	52.5	1	16.809918	2.2387207	ACCEPT
XIE	30.02	1	3.488346	2.2740614	ACCEPT
IBM	10	1	4.0612657	1.6704087	ACCEPT

Table -4 SPRT	analysis for	5 Data Sets	with Pareto Type II
ruole i britti	unury 515 101	Duta Deto	minini anoto i jpo ii

Data Set	Т	N(t)	R.H.S. of equation(8) Acceptance region (≤)	R.H.S. of equation(9) Rejection region (≥)	Decision
	9	1	-0.625494	5.689154	
	21	2	1.370656	7.804387	Accept
NTDS	32	3	3.06055	9.601969	
	5.5	1	-1.762828	4.416667	
	7.33	2	-1.617226	4.575441	
AT & T	10.08	3	-1.401039	4.811382	Continuous

	80.97	4	3.265448	9.971477	
	84.91	5	3.482139	10.214789	
	99.89	6	4.272655	11.105808	-
	103.36	7	4.448588	11.304863	-
	113.32	8	4.939423	11.861747	
	124.71	9	5.476276	12.473563	-
	144.59	10	6.355699	13.48242	-
	152.4	11	6.682622	13.85972	-
	167	12	7.267859	14.538445	
	178.41	13	7.703148	15.046188	
	197.35	14	8.386277	15.848453	
	262.65	15	10.420503	18.283354	
	262.69	16	10.421617	18.284709	
	388.36	17	13.319395	21.91564	
	471.05	18	14.731926	23.787736]
	471.51	19	14.738957	23.797297	
	503.12	20	15.203084	24.432892	
	632.43	21	16.773601	26.68379	
	680.03	22	17.245247	27.398149	
	52.5	1	-1.235305	4.701932	
	105	2	-0.342398	5.602728	
	131.25	3	0.10216	6.051227	
	183.75	4	0.987512	6.944455	
	201.25	5	1.281519	7.241086	
	306.25	6	3.034022	9.009312	
	411.25	7	4.766978	10.757959	
	432.25	8	5.111252	11.105367	
	467.25	9	5.68334	11.682677	
	502.25	10	6.253312	12.257866	_
	554.75	11	7.104327	13.1167	_
	607.25	12	7.950644	13.970829	
	712.25	13	9.629343	15.665127	_
	747.25	14	10.184821	16.225799	
	799.75	15	11.014244	17.063005	_
	852.25	16	11.839148	17.895684	_
	887.25	17	12.386591	18.448306	
	939.75	18	13.204044	19.273521	
	1044.75	19	14.825719	20.910698	_
	1149.75	20	16.429991	22.53044	4
	1254.75	21	18.017137	24.133026	4
	1359.75	22	19.587431	25.718731	4
	1412.25	23	20.366342	26.505336	4
SONATA	1464.75	24	21.14114	27.28782	Continuous

Volume 8 Issue 3 June 2017

	1517.25	25	21 011957	28 066217	1
			21.911857	28.066217	-
	1569.75	26	22.678526	28.840557	_
	1674.75	27	24.199845	30.377198	_
	1727.25	28	24.954558	31.139561	
	1779.75	29	25.705348	31.897993	
	1832.25	30	26.452245	32.652526	
	30.02	1	0.956814	7.340516	
	31.46	2	1.096422	7.490942	
XIE	53.93	3	3.145993	9.707533	Accept
	10	1	-1.425715	4.755247	
	19	2	-0.759069	5.480016	
	32	3	0.156309	6.478616	
	43	4	0.890075	7.282146	
	58	5	1.835309	8.321581	
	70	6	2.549062	9.109948	
	88	7	3.555208	10.226823	
	103	8	4.339626	11.102466	
	125	9	5.410192	12.305183	
	150	10	6.523917	13.566826	
	169	11	7.305376	14.459184	
	199	12	8.438666	15.765056	
	231	13	9.52864	17.035912	
	256	14	10.3058	17.952224]
IBM	296	15	11.431953	19.297328	Continuous

IV.CONCLUSION

The SPRT methodology for the software reliability growth model of Burr type III and Pareto Type II applied for the software failure data sets are considered and an analogous study is made on them. From the observation we are able to come to a conclusion in a very less time regarding the reliability or unreliability of a software product and the results obtained from the datasets of Burr Type III exemplify that the model has given a decision of acceptance for all the data sets at very first instance of the data and has given an early decision in comparison with the Pareto Type II software reliability model.

REFERENCE

- Marinos, Swapna S. Gokhale Peter N., and Kishor S. Trivedi. "Important Milestones in Software Reliability Modeling." In Proceedings of Software Engineering and Know ledge Engineering (SEKE' 96), Lake Tahoe, NV, pp.345-352.1996.
- [2] STIEBER, H.A.(1997). "Statistical Quality Control: How To Detect Unreliable Software Components", Proceedings the 8th International Symposium on Software Reliability Engineering, 8-12
- [3] Dr. R. Satya Prasad, N Geetha Rani, Dr. R. R. L. Kantam, "Detection of Reliable Software Using SPRT & Pareto Type II SRGM", IJCST Vol. 3, Issue 4, Oct - Dec 2012,
- [4] Card D., (1994), "Statistical Process Control for Software", IEEE Software, May, 95-97 Detection of Reliable Software Using SPRT & Pareto Type II SRGM.

- [5] John D.Musa; "Software Quality and Reliability Basics"; AT&T Bell Laboratories. CH 2468-7/87/0000/014,1987 IEEE.
- [6] Wald A. Sequential Analysis. New Impression edition. New York: John Wiley and Son, Inc; 1947 Sep 30.
- [7] K.B.Misra."Handbook of Performability Engineering". Springer. 2008.
- [8] Reckase MD. A Procedure for decision making using tailored testing. In: Weiss DJ, editor. New horizons in testing: Latent trait theory and computerized adaptive testing. New York: Academic Press; 1983. p. 237–54.
- [9] V.Goutham, R.Satya Prasad "An SPRT Procedure for an Ungrouped Data using MMLE Approach", IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727, Volume 14, Issue 6 (Sep. - Oct. 2013), PP 37-42.
- [10] Ch.Smitha Chowdary, Dr R.Satya Prasad, K.Sobhana, "Burr Type III Software Reliability Growth Model," IOSR-JCE Volume17, Issue 1, Jan-Feb 2015.
- [11] Dr.R.Satya Prasad, N.Geetha Rani & Prof.R.R.L. Kantam, "Pareto Type II Based Software Reliability Growth Model", International Journal of Software Engineering (IJSE), Volume (2): Issue (4), 2011.
- [12] Goel, A.L., Okumoto, K., "Time- dependent error-detection rate model for software reliability and other performance measures". IEEE Trans. Reliab. R-28, 206-211,1979
- [13] Satya Prasad R. Half Logistic Software Reliability Growth Model [PhD Thesis]. India: ANU; 2007.
- [14] CH.Smitha, Dr.R.Satya Prasad, Dr.R.Kiran Kumar, "Burr Type III Process Model with SPRT for Software Reliability", International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763, Issue 12, Volume 3 (December 2016)
- [15] Dr. R. Satya Prasad, N Geetha Rani, Dr. R. R. L. Kantam, "Detection of Reliable Software Using SPRT & Pareto Type II SRGM", IJCST Vol. 3, Issue 4, Oct - Dec 2012.
- [16] Pham H. System Software Reliability. Springer; 2006.
- [17] Lyu MR. The Hand book of software Reliability engineering. McGrawHill and IEEE Computer Society Press; 1995. ISBN: 9-07-039400-8.
- [18] Ashoka M. Data set. Bangalore: Sonata Software Limited; 2010.