Coefficient of Consolidation: Simplified
One Point Method

Binu Sharma

Abstract: Estimation of the time required for a specified percentage of consolidation or the rate of consolidation settlement is very important for civil engineering construction practice. For this purpose selecting a proper value for the coefficient of consolidation, \(C_v \), is necessary. To obtain \(C_v \), by the consolidation test requires a great amount of time and it is also dependent upon the method adopted of obtaining the same. One point method of obtaining co-efficient of consolidation has been proposed in the literature to optimize the effort and time of the geotechnical person. In this paper the one point method of obtaining the coefficient of consolidation has been further simplified. This method is devoid of any curve fitting procedure and no assumptions are made except that the time - deformation behavior could be treated as a well accepted rectangular hyperbola. The proposed method requires very few time versus deformation readings for a short time of about less than 30 minutes from which one can get the final deformation assuming a rectangular hyperbola behavior of time – deformation. The coefficient of consolidation can be determined knowing time taken for 50% consolidation.

Keywords: Consolidation, coefficient of consolidation, one point method, rectangular hyperbola

I. INTRODUCTION

An area of soil mechanics of profound importance is the estimation of the time required for a specified amount of consolidation or the probable consolidation settlement at any point of time. The key for estimating the rate of consolidation settlement or the rate of dissipation of pore pressure lies in selecting a proper value for the coefficient of consolidation, \(C_v \). To obtain \(C_v \), by the consolidation test requires a great amount of time and effort and it is also dependent upon the method adopted of obtaining the same.

Several researchers have proposed methods for obtaining a more reliable value of \(C_v \) from laboratory oedometer tests. The usual technique is to compare some characteristics features of Terzaghi’s theoretical time factor, \(T_v \) – degree of consolidation, \(U \) relationship with the compression and time data obtained from the laboratory test. This forms the basis for most of the graphical techniques that are available in literature ([1-9] to name a few). Additionally there are several curve fitting methods which have been proposed [10 – 16]. Pandian et al. [13] showed by examination of Terzaghi’s theoretical degree of consolidation \(U \) and theoretical time factor \((T_v) \) curve, that log \(U/T_v \) versus log \(T_v \) plot exhibits a bilinear behaviour. The intersection point corresponds to a theoretical time factor of 0.793 and a degree of consolidation of 88.5%. Using this property, the following equation (1) for the coefficient of consolidation was proposed

\[
C_v = \frac{0.793 d^2}{t_{50.5}} \tag{1}
\]

where, time \(t \) corresponds to 88.5% consolidation which can be obtained from the log \(\delta/t \) versus log \(t \) plot.

There are several research workers who conclude that the time - compression data can be represented by a rectangular hyperbola. According to Sridharan and Sreepada Rao [17] and Sridharan et al.[12], the time factor \(T_v \) and degree of consolidation \(U \) from Terzaghi’s theory can be shown to be a rectangular hyperbola over the degree of consolidation range 60% to 90%. They observed that when time factor \(T_v \), and degree of consolidation \(U \) are plotted in the form \(T_v/U \) versus \(T_v \), a curve is obtained upto about \(U = 60\% \) and a straight line for \(60\% \leq U \leq 90\% \) for double drainage. The similarities between theoretical \(T_v/U \) versus \(T_v \), and experimental \(t/\delta \) versus \(t \) plots are used to present a simple method to determine \(C_v \). After plotting \(t/\delta \) versus \(t \), identification of the initial straight line part in this plot is made. The values of slope ‘m’ and the intercept ‘c’ of the straight line part are measured. The thickness of the sample is ‘h’. The value of \(C_v \) is then computed from the following relation (2)

\[
C_v = \frac{0.24 m h^2}{c} \tag{2}
\]

Thus this method requires a plot of \(t/\delta \) versus \(t \) until a clear straight line is obtained. After obtaining \(m \) and \(c \), \(C_v \) can be obtained.

II. ONE POINT METHOD

Sridharan and Prakash [19] had observed that when theoretical \(U-T \) relationship, laboratory \(\delta-t \) data and the same \(\delta-t \) data corrected for initial and secondary compression effects are expressed in the form of log_{10}H^2/t versus \(U \) curve, the effects of primary and secondary compressions are least in the range 40% < \(U < 60\% \). The \(C_v \) values obtained in the range 40% < \(U < 60\% \) may be considered to represent the soil for which \(\delta-t \) is obtained reasonably...
well. The very observation that experimental behavior of soil without correction for initial and secondary compression effects match well with the theory in the range $40\% < U < 60\%$ lead to the development of the one point method of C_v, determination by Sridharan and Prakash [18]. To determine C_v by the one point method the value of final compression δ_v is considered at the end of the loading period. The duration of loading period for each increment of loading is normally taken as 24 hours. Thus one has to wait for 24hrs or more to get the value of final compression. Next, the compression corresponding to 50% consolidation i.e. $0.5\, \delta_v$ is determined along with corresponding time t_{50}. C_v is calculated corresponding to the noted time t_{50} as $C_v = T_v = H^2/ t_{50}$. Thus it can be seen that the one point method is very simple, however one need to carry out the consolidation test for a particular load increment for about 24 hrs and need to note the time taken for 50% consolidation after getting δ_v. The first part of the present article aims to see the efficacy of the one point method corresponding to time t_{50}, C_v is also determined corresponding to time t_{45} and t_{55} in this study as these values of C_v will also lie in the range $40\% < U < 60\%$ and will give least effects of primary and secondary compressions. Secondly the present article also attempts to determine C_v by a simple and quick method of obtaining δ_t and t_{50} following observations from Sridharan et al. [18], where the entire range of time compression readings need not be taken.

III. TEST RESULTS AND DISCUSSION

The experimental data used in the following illustrations were obtained from the conventional one dimensional consolidation tests carried out. Twelve soil samples with liquid limits ranging from 33.8% to 78% were tested to determine their consolidation and other relevant physical properties. The physical properties of the soils are shown in Table 1.

Table-1 Physical properties of the soils tested

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Site Location</th>
<th>Liquid Limit w_L (%)</th>
<th>Plastic Limit w_p (%)</th>
<th>Plastic Index $P_{1.1}$ (%)</th>
<th>Specific Gravity G_s</th>
<th>Unified Soil Classification (USCS)</th>
<th>t_{50} (min)</th>
<th>For stress range of 160kN/m2 to 320kN/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V.I.P.</td>
<td>38.5</td>
<td>18.5</td>
<td>21.5</td>
<td>2.63</td>
<td>CL</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Noonmati Sample-2</td>
<td>69.0</td>
<td>25.6</td>
<td>45.0</td>
<td>2.72</td>
<td>CH</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A.E.C. Sample-3</td>
<td>61.0</td>
<td>23.9</td>
<td>38.5</td>
<td>2.68</td>
<td>CH</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sonapur</td>
<td>66.0</td>
<td>23.2</td>
<td>42.0</td>
<td>2.71</td>
<td>CH</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I.I.T.B.H.-1-5.7m</td>
<td>60.0</td>
<td>25.5</td>
<td>35.8</td>
<td>2.71</td>
<td>CH</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Noonmati Forest Gate</td>
<td>77.0</td>
<td>31.0</td>
<td>49.0</td>
<td>2.68</td>
<td>CH</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Numaligarh Marketing Terminal-3</td>
<td>42.0</td>
<td>20.5</td>
<td>22.0</td>
<td>2.65</td>
<td>CL</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Down Town Hospital Site-I</td>
<td>44.0</td>
<td>18.0</td>
<td>28.0</td>
<td>2.70</td>
<td>CL</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ajara</td>
<td>52.5</td>
<td>21.5</td>
<td>31.5</td>
<td>2.71</td>
<td>CH</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bansar</td>
<td>33.8</td>
<td>17.5</td>
<td>17.8</td>
<td>2.68</td>
<td>CH</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A.E.C. Hostel-3</td>
<td>46.0</td>
<td>17.5</td>
<td>29.8</td>
<td>2.65</td>
<td>CH</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A.E.C. Sample2</td>
<td>78.0</td>
<td>27.0</td>
<td>48.5</td>
<td>2.71</td>
<td>CH</td>
<td>5.50</td>
<td></td>
</tr>
</tbody>
</table>

The coefficients of consolidation based on consolidation tests were determined by the Taylor’s square root of time fitting method, Casagrande’s logarithm of time fitting method, Pandian’s bilinear method and Rectangular hyperbola method. These C_v values which happen to be within the range of C_v values of remoulded soils recorded in NAVFAC- DM 7.1 [20], show their characteristic inconsistency usually observed [21,22]. Using the one point
method, the coefficient of consolidation C_v corresponding to t_{50} was determined for the twelve soil samples. Fig. 1 to Fig. 4 show the comparison between C_v corresponding to t_{50} and Taylor’s, Casagrande’s, Rectangular Hyperbola and the Pandian’s Bilinear C_v values respectively. The mean deviation between the one point method and the Taylor’s and Casagrande’s method is 16.2% and 14.2% respectively. Fig. 5 shows the comparison between the Taylor’s method and the Casagrande’s method with the experimental data of this work. The average percentage deviation between the two methods is 12.18%. Sridharan and Prakash [18] reports the variation between these popular methods is more than 25% in many cases.

Similarly the mean deviation between the one point method and the Rectangular hyperbola method and Bilinear method are 10.7% and 15%. These observations are of importance in the context that the variation in the values of C_v obtained by Taylor’s and Casagrande’s method is much larger as reported in literature.

Figure.1 Comparison of C_v between Taylor’s method and the One point method.

Figure.2 Comparison of C_v between Casagrande’s method and the One point method.
Figure 3: Comparison of C_v between Rectangular Hyperbola method and the One point method.

Figure 4: Comparison of C_v between Pandian’s Bilinear method and the One point method.

Figure 5: Comparison of C_v between Taylor’s method and Casagrande’s method.
Using the one point method, the compression corresponding to 45% consolidation i.e. 0.45 δ_{f} is determined along with corresponding time t_{45} and the compression corresponding to 55% consolidation i.e. 0.55 δ_{f} is determined along with corresponding time t_{55}. Using t_{45} and t_{55} the corresponding C_{v} values are calculated. C_{v} values are determined corresponding to time t_{45} and t_{55} in this study as these values of C_{v} will also lie in the range 40% < U < 60% and will give least effects of primary and secondary compressions. It is also intended to see whether better values of C_{v} can be obtained corresponding to t_{45} and t_{55} compared to t_{50}. These values of C_{v} are found to have a similar variation as that of C_{v} obtained corresponding to time t_{50} if not better. Hence one point method from t_{50} and δ_{50} is well acceptable. The average C_{v} or C_{av} values obtained from averaging time corresponding to time t_{45}, t_{50} and t_{55} is also found to have good agreement with the above four methods with mean deviation being 16.7, 15.1, 11.6 and 17% respectively. These values of mean deviation are shown in Table 1.

3.1. Determination of C_{v} by the Simplified One Point Method (SOPM)

Sridharan et al. (1987) showed that the U-T_{v} relationship can be approximated as rectangular hyperbola in the range of U = 60 to 90%. It is possible to obtain a clear straight line only beyond U = 60%. Figs. 6a to 6d, clearly show this aspect. To get the straight line portion to obtain the slope of the U-T_{v} relationship after 60% consolidation, very few readings are to be taken. We need not wait upto 24hrs. Again Sridharan et al. [12] have shown that the rectangular hyperbola method provides a simple method to predict the magnitude of final compression, δ_{f}. The slope (m) of the time (t)/compression (δ) versus time (t) plot can be determined and final compression (δ_{f}) can be predicted by calculating one divided by the slope. One divided by the slope has been shown to be a useful parameter in predicting the magnitude of total compression δ_{f}. One need to take time – compression readings only till to get a well defined slope.
Figure 6a to 6d show typical plots of t/δ versus t plot of four soils.

Having got δ_c, one can get the time taken for 50% consolidation i.e. t_{50} by taking the reading up to 50% of consolidation. Knowing t_{50}, the coefficient of consolidation can be obtained. Time taken to obtain the well defined slope is quite less and varies from 10 minutes to 30 minutes for the different load increments, for the 12 soils tested. Time taken to obtain 50% degree of consolodation for load increment 160kN/m2 to 320kN/m2 are shown in Table 1. This method, henceforth, will be called the simplified one point method. The advantage of the simplified one point method is that one need not wait till total consolidation is over to get δ_c. Only eight to nine readings are to be taken to get the straight line of the t/δ versus t plot and hence the slope. Typical plots of the t/δ versus t plot of four soils are shown from Fig. 6a to Fig.6d. The plot of ultimate compression or δ_c versus actual total compression from experiments of the twelve samples are shown in Fig.7. It is observed that comparatively good agreement is seen between δ_c and actual compression obtained after 24 hours of laboratory consolidation.
Figure 7: Plot of ultimate compression or δ_f versus actual total compression.

Figure 8: Comparison of C_v between Taylor's method and the Simplified one point method.

Figure 9: Comparison of C_v between Casagrande’s method and the Simplified one point method.
C\textsubscript{v} corresponding to t\textsubscript{50} obtained from the simplified one point method have been determined for the twelve soil samples. The relationship between these values of C\textsubscript{v} called C\textsubscript{vso} and C\textsubscript{v} determined by the Taylors (C\textsubscript{vt}) and Casagrande (C\textsubscript{vc}) methods are shown in Fig. 8 and Fig. 9. Similarly the relationship determined from the simplified one point method (C\textsubscript{vso}) and the one point method is shown in Fig.10. The mean deviation between these two methods is 13.96%. In most of the cases there is good agreement between the methods. The mean deviations as shown in Table 2 are 20.66%, 15.52%, 18.67% and 13.27% with the Taylor method, Casagrande method, Bilinear method and the Rectangular hyperbola method respectively. The variations obtained comparing these various methods is in the same order of variations obtained between different well accepted methods of getting C\textsubscript{v}. Sridharan and Prakash [18] had shown the mean deviation of C\textsubscript{v} between Taylor’s method and Casagrande’s method to be 49.1%. It is also reported in literature that the values obtained by Taylor’s and Casagrande’s methods can differ from each other very widely. The advantage with the proposed method is that one can take 8 or 10 readings of time versus settlement while doing the consolidation test to get a straight line in the plot between t/δ versus t. Getting the slope from the plot the total compression or δ\textsubscript{f} can be determined. From δ\textsubscript{f}, 50% compression value is obtained and from it time t\textsubscript{50} and hence C\textsubscript{v} corresponding to t\textsubscript{50} can be determined.

Table 2

<table>
<thead>
<tr>
<th>Method to determine C\textsubscript{v}</th>
<th>Average % deviation with C\textsubscript{v} determined from t\textsubscript{50} of One point method</th>
<th>Average % deviation with C\textsubscript{v} determined from t\textsubscript{av} of One point method</th>
<th>Average % deviation with C\textsubscript{v} determined from t\textsubscript{50} from SOPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor’s Method</td>
<td>16.2</td>
<td>16.7</td>
<td>20.66</td>
</tr>
<tr>
<td>Casagrande’s Method</td>
<td>14.2</td>
<td>15.1</td>
<td>15.52</td>
</tr>
<tr>
<td>Rectangular Hyperbola Method</td>
<td>10.7</td>
<td>11.6</td>
<td>13.27</td>
</tr>
<tr>
<td>Pandian Bilinear Method</td>
<td>15</td>
<td>17</td>
<td>18.67</td>
</tr>
<tr>
<td>One Point Method (t\textsubscript{50})</td>
<td>10</td>
<td>13.96</td>
<td></td>
</tr>
</tbody>
</table>

While using the one point method or the other methods as discussed above, the entire range of time compression readings are to be taken. However using the simplified one point method, the coefficient of consolidation, C\textsubscript{v} can be obtained very quickly as δ\textsubscript{f} can be obtained by knowing a few data points till the slope of the straight line portion of t/δ versus t is obtained. Time taken upto t\textsubscript{50} is very less.
Again considering the limitations and the assumptions involved in the curve fitting methods, the simplified one point method, which is devoid of any curve fitting procedure can be considered to be a quick, simple and acceptable method to determine the coefficient of consolidation.

IV. CONCLUSIONS

Simplified one point method of obtaining the coefficient of consolidation has been proposed. The proposed method requires (i) Very few time versus deformation readings for a short time of about less than 30 minutes (ii) One can get the final deformation assuming a rectangular hyperbola behavior of time – deformation behavior. (iii) The coefficient of consolidation can be determined knowing time taken for 50% consolidation. Comparison of results with time consuming popular methods show the proposed method is very much valid. No assumptions are involved except that the time – deformation behavior could be treated as a rectangular hyperbola to obtain final deformation for any load increment.

V. REFERENCE