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Abstract—The objective of this article is to develop a boundary element numerical model to solve coupled problems 

involving heat energy diffusion, convection and radiation in a square differentially heated cavity filled with participating 

grey medium. The P1approximation is used to solve the radiative transfer equation. The governing Navier-Stokes equations 

are written in the velocity-vorticity formulation for the kinematics and kinetics of the fluid motion. The approximate 

numerical solution algorithm is based on boundary element numerical model in its macro-element formulation. The 

developed algorithm is validated by comparing results of radiative heat transfer with benchmark data. Furthermore, the 

developed algorithm is tested by simulating natural convection and radiation heat transfer under large temperature 

differences where compressible flow solution is required. 

IndexTerms—Boundary element method, fluid flow, heat transfer, radiation, velocity-vorticity. 

 

I. INTRODUCTION 

The combined heat transfer of the radiation and natural convection in the participating (absorbing-emitting-scattering) 

media is significant in many fields of building and industry, including the boiler, furnace, building thermal comfort 

and solar reactor. The research on the analysis and numerical solution of heat transfer and fluid flow phenomena where 

radiative heat exchange has an essential contribution, becomes a key aspect for the employment of computational fluid 

dynamics simulations as a worthwhile complement to experimental research into industry-related problems. These 

problems involve the solution of the Navier-Stokes equations and radiative transfer equation (RTE). 

Radiative heat transfer plays an important role in the heat transfer in cavities [8], [9], [10],[11], [12], [20].Many 

investigations dealing with coupling natural convection and the radiation in cavities have been conducted with a 

transparent medium [18], [20]. Participating gasses with heteropolar diatomic molecules, such as carbon dioxide 

(CO2) and water vapour, which emit and absorb thermal radiation, have an important effect on the heat transfer in 

cavities. However, many real engineering problems involve truly absorbing-emitting gases. In this case, volumetric 

radiation can significantly affect the temperature field which, in turn, induces changes in the fluid dynamic. 

Regarding the coupling of radiation with the double diffusive natural convection, most of the available investigations 

use the simple assumption of fictitious greymedium. In these works, the fluid was generally regarded as optically thick 

and the radiative fluxes were calculated by using the Rosseland approximation. Ibrahim et al. [8], Mezrhab et al. [12], 

and Moufekkir et al. [14] have investigated the coupling phenomena in a gas mixture. They considered a more realistic 

situation of an absorption coefficient of fluid proportional to the local temperature and concentration of the absorbing 

species. These studies are still limited to the grey gas assumption. 

The objective of this article is to develop a boundary element numerical model (BEM) to solve coupled problems 

involving heat energy diffusion, convective and radiative heat transfer in a participating fluid [15]. BEM has been 

previously applied for the solution of heat conduction and coupled heat conduction-convection problems by many 

authors. The addition of radiation was considered by [2], [3]. However, unlike the previous studies [2], [3] in this study 

we propose the use of the Grey Gas Model (GGM) [1] for the participating medium. 

The developed algorithm is tested by simulating natural convection and radiation heat transfer under large temperature 

differences where compressible flow solution is required [5], [17]. The impact of radiation on the overall heat transfer 

is presented using the approach for optical thick fluids, i.e. the P1 radiative model [6]. In the model, we express the 

incident radiation at a given position in the radiation field by the nonlinear nonhomogeneous modified Helmholtz 

equation. Under the Marshak boundary condition, we solve the equation iteratively as a coupled system with the 

energy equation. 

Next, the governing equations are transformed with the use of the velocity-vorticity variables formulation into 

kinematics and kinetics [2]-[4]. By applying BEM, we transform partial differential equations (PDE) into integral 

equations [7], [21]. To test the validity and accuracy of the proposed numerical scheme, we study the problem of the 

overall heat transfer in a closed square cavity filled with a grey participating medium. The velocity and temperature 

fields together with the total heat transfer are calculated for the Rayleigh numbers in the laminar regime, and the 
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solutions compared to the published standard results [9], [10], [14]. 

 

II. GOVERNING EQUATIONS 

The present development is focused on the laminar flow of compressible isotropic radiation semi-transparent fluid in 

solution domain  where  stands for the two-dimensional plane domain bounded by boundary  defined by 

the outward-pointing unit normal , whilst  represents time dimension of the transport phenomenon. The mass, 

momentum and energy equations are given by the following set of nonlinear equations 

 

 

 
 

 
 

in the Cartesian frame , where the field functions of interest are velocity vector field , pressure scalar field 

 and the temperature scalar field ,  and  denote variable mass density and isobaric specific heat 

capacity per unit volume, , is time,  is gravitational acceleration vector,  represents the divergence of the 

velocity field or the local expansion rate, whilst the vector variables  and are heat diffusionand radiation fluxes, 

respectively. The differential operator  standsfor the Stokes material derivative. 

The conservation equations (2) and (3) contain two molecular diffusive fluxes, i.e.  and , representing the 

diffusion of linear momentum and the heat flux vector, respectively. The Newton linear momentum diffusion 

constitutive model for compressible viscous shear fluid is considered, such as [3] 

 

 
 

where  is the dynamic viscosity coefficient. For most heat-transfer problems of practical importance, the 

simplification known as the Fourier law of heat diffusion is accurate enough, namely 

 

 
 

where  is the diffusion thermal heat conductivity. 

The governing equation for radiative heat transfer is the radiative transfer equation (RTE) and was discussed 

previously by Crnjac et. al. [2]-[4]. The RTE is based on an energy balance for radiation passing through a differential 

volume in a participating medium in local thermodynamic equilibrium (LTE).For the coupling of the radiative heat 

transport with the fluid dynamics, LTE is assumed and the time dependence of the RTE is neglected [13], [19]. It 

follows from LTE that the temperature of the fluid and the corresponding radiative temperature in the medium are 

equal. The solution of the RTE implies a considerable computational cost due to the directional nature of the intensity 

radiation field. This high computational cost limits detail in the simulation of coupled radiation and convection. 

Therefore, improvements of the numerical methods and the fundamental analysis of these complex phenomena have 

motivated interest in the scientific community.       

The spectral extinction coefficient of the participating medium is defined as the sum of the 

spectral absorption coefficient  and the spectral scattering coefficient  [19].In the grey medium with 

constant  and the  approximation reduces the RTE into a nonlinear nonhomogeneous modified Helmholtz 

equation [2]-[4] 
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with  and temperature dependent nonhomogeneous term . The spectral incident radiation 

function  describes the total intensity  impinging on a point  in the medium from all directions [17] 

 

 
 

Note that the spectral incident radiation divided by the speed of light  is the spectral radiative energy density at 

location  in the radiation field. The divergence of the radiation flux vector in equation (3) can be expressed as the 

local radiation source term  

 

 
 

If it is assumed that the walls are diffuse grey surfaces, the equation (6) is solved using Marshak boundary condition 

[2]-[4] 

 

 
 

where  is the emissivity of the wall and the subscript  denotes the value of the indicated variable at the wall.  

In this study, the grey gas absorption coefficients for participating gases are correlated by Barlow et al. [1], so the 

following expression is used to calculate  in units of ( ) 

 

 
(10) 

 
 

Coefficients  and  are calculated for different gases as suggested by [1]. These curve fits were 

generated for temperatures between 300 K and 2500 K and may be very inaccurate outside this range. 

 

III. VELOCITY-VORTICITY FORMULATION OF NAVIER-STOKES EQUATIONS 

Substituting equations (4) and (5) for the non-convective heat and momentum fluxes in conservation equations (2) and 

(3) the following system of nonlinear Navier-Stokes equations for the primitive variables is developed 
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where is the unit tensor. Representing the transport properties of the fluid as a sum of a constant and variable part, 

i.e. , ,  and , the momentum and energy equations (12) and (13) can be 

stated in analogy to the transport equations formulated for the constant transport properties 

 

 
 

 
 

where the pseudo body force term  and pseudo heat source term  are introduced into the momentum equation 

(12) and into energy equation (13) respectively, capturing the variable transport property effects, and given by 

expressions 

 

 
(16) 

 
 

while the pseudo heat source term is given by an expression 

 

 
 

in which the kinematic viscosity is , the heat diffusivity  and the inertia acceleration vector is 

. 

In velocity-vorticity formulation the fluid motion computation procedure may be partitioned into its kinetics and 

kinematics. The kinematics deals with the relationship and restriction among the velocity field at any given instant of 

time, the vorticity  and local expansion field at the same instant, and given by the following vector 

elliptic Poisson equation for the velocity vector 

 

 
 

For the known vorticity and local expansion field functions, the corresponding velocity vector can be determined by 

solving equation (18), providing that appropriate boundary conditions for the velocity are prescribed, i.e. normal and 

tangential component of the velocity vector.  

The kinetic aspect of the fluid motion is governed by the vorticity transport equation 

 

 
 

 
 

describing the redistribution of the vorticity in the fluid domain by different transport phenomena, e.g. diffusion, 

convection, twisting and stretching, whilst the buoyancy, compressibility, and the nonlinear terms act as a source or 

strengthen terms [3]. 

For the two-dimensional plane motion the equations (18) and (19) significantly reduce to plane kinematics given by 

the following equation 
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whilst the kinetics is expressed by the scalar vorticity equation 

 

 
 

To derive the pressure equation, the divergence of equation (14) should be calculated, resulting in the elliptic Poisson 

pressure equation [3] 

 

 
 

where in the vector function  the diffusion, inertia, gravitational and nonlinear material property effect are 

incorporated 

 

 
 

IV. BOUNDARY-DOMAIN INTEGRAL EQUATIONS 

In general, the set of equations (6), (20), (21) and (22) have to be transformed, using the Green identities or weighted 

residual techniques in combination with appropriate fundamental solutions, into boundary-domain integral 

equations[2]-[4].The singular boundary-domain integral representation for the velocity vector can be formulated 

rendering the following integral formulation for the two-dimensional plane kinematics 

 

 
 

 
 

where  stands for the elliptic Laplace fundamental solution 

 

 
 

In equation (24) we note  and  for the normal and tangential derivative of the fundamental 

solution, while the quantity  is the distance vector, which points from the source point  to the field point . The 

geometrical coefficient  denotes the fundamental solution related coefficient depending on the position of the 

source point . 

Considering the kinetics in an integral representation one has to take into account parabolic diffusion character of the 

vorticity transport equation (21). Applying the linear diffusion differential operator the following 

boundary-domainintegral representation corresponding to equation (21) can be derived as 
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(26) 

 
 

 
 

where  is now parabolic diffusion two-dimensional plane fundamental solution [3] 

 

 
 

where  and  are used for the source and reference space and time field points and . Quantities , 

 and  are the normal velocity component, the tangential component of the gravity and nonlinear source vectors, 

respectively. 

The corresponding integral representation of the pressure equation (22) is given by 

 

 
 

where the vector  is given by equation (23). For given Neumann boundary conditions, the pressure field is 

determine with the solution of integral equation (28) taking into account known velocity and vorticity vector field 

functions, and transport property values.  

The integral representation of the nonlinear heat energy diffusion convection transport equation is derived considering 

the linear parabolic diffusion differential operator yielding the following integral representation [3] 

 

 

 
 

 
(29) 
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The incident radiation equation (6) is an elliptic modified Helmholtz equation and the corresponding 

boundary-domain integral representation can be stated as 

(30) 

 
 

where  is now the modified Helmholtz fundamental solution and given by 

 

 
 

whilst  is a modified Bessel function of the second kind of order . 

 

V. DISCRETIZED INTEGRAL EQUATIONS 

For the numerical approximate solution of the field functions, the corresponding integral equations are further written 

in a discretized form in which the integrals over the boundary and domain are approximated by a sum of the integrals 

over all boundary elements and over all internal cells. Since the implicit set of equations is written simultaneously for 

all boundary and internal nodes, this procedure results in a fully populated influence and system matrices, resulting in 

large computing times and memory demands, which is especially true considering the fluid flow characterised by a 

high Reynolds number value [3].  

In order to improve computational efficiency of the computation we employ the macro-element approach [16]. The 

idea is to use a collocation scheme for integral equations for each domain cell separately and require that the field 

functions and their normal derivatives must obey the compatibility and equilibrium conditions over the domain cell 

boundaries. The final system of equations for the entire domain is then obtained by adding the sets of equations for 

each macro-element, resulting in a sparse system matrix suitable to solve with iterative techniques. 

In our case, each macro-element consists of four continuous 3-node quadratic boundary elements with 1-node constant 

approximation for the normal flux, and a 9-node continuous quadratic internal cell [3]. The quadratic interpolation 

functions have been used since a good approximation of the boundary values of the velocity gradients ensure an 

accurate evaluation of the boundary vorticity values, which strongly influence the stability of the numerical method. 

Linear approximation of field functions over each individual time increment is also considered. 

 

VI. TEST EXAMPLES 

Details of the geometry and boundary conditions for the simulation of combined natural convection and radiation heat 

transferare shown in Fig. 1. In order to check the accuracy of the relevant numerical scheme, a test problem was 

considered previously analyzed by Lari et al.[9]. It can be observed that the results obtained by Crnjac et al. [3] are in 

excellent agreement with the previous studies by Lari et al. [9]. 
 

 
Fig.1.The geometry of the cavity: boundary and initial conditions (left), computational mesh (60x60 cells) (right). 
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Fig. 2. Temperature fields for different temperature driving potentials, top row: no radiation, bottom row: model. 

 

The two horizontal walls are perfectly insulated, while the two vertical walls are maintained at two different 

temperatures  and , , respectively. The inner surfaces, in contact with the fluid, are assumed to be grey 

and diffuse. In all test examples we consider a square cavity ( ), filled with a Newtonian compressible 

viscous semi-transparent fluid. It is submitted to a temperature difference  at the vertical walls, with 

uniform temperatures ,  and , respectively, and . The top and bottom 

walls of the enclosure are considered adiabatic, i.e. there is no heat flux through them. The initial conditions are given 

by the value  and . On all walls the no-slip condition is imposed for the velocity. The 

problem is free of any singularity in the boundary conditions except the presence of the corners in the cavity. 

The computational mesh is composed of 240 boundary elements and 3600 internal cells, i.e. 60x60 macro-elements 

with a ratio of 6 between the longest and the shortest element. The convergence criterion was selected as . The 

present time-dependent analyses were performed by running the simulation from the initial state with a time step value 

of 1s.      

Because the density of the fluid depends on the temperature, the fluid starts moving upward at the hot wall due to 

buoyancy, and downward at the cold wall. The velocity of the fluid depends on the Rayleigh number  

 

 
 

where  is the charasteristic nondimensional Prandtl number,  is the dimension of the square cavity,  is a 

reference temperature defined as  and  is a reference mass density. 

As a test example, the impact of radiation on the overall heat transfer is analysed by applying the radiative model. In 

engineering radiative transfer problems, the  model should typically be used for spectral optical thicknesses 

[19]. To consider the effect of differing driving forces for buoyant flow, we vary the 

temperature of the hot wall as the primary variable in this study. As a first numerical example, the impact of radiation 

on the overall heat transfer is analysed with temperature difference The second 

computations were performed for , as a result of imposed  and . The third 
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example is analysed with temperature difference . It was assumed, that the transient 

simulation results achieved steady state when the selected convergence criteria between two-time steps was satisfied. 

Let us present the temperature and velocity fields, respectively, predicted by the  model for the case of conduction, 

radiation and significant levels of convection. Fig. 2 compares the influence of the internal radiation with on 

the fluid structure for three temperature differences.It is obvious that the radiation transfer is characteristically 

different from the convection heat transfer and depends on the properties of the medium including the optical 

thickness. The effects are visible along the horizontal walls and at the core of the cavity. Compared to the case without 

radiation, fluid circulation is increased under radiation, and isotherms structures in the cavity are affected by thermal 

radiation.  

 

 

 
 

  

   

   
 

Fig. 3. Horizontal temperature profiles at  (top row) and vertical temperature profiles at  (bottom row), 

solid line: model, dashed line: without radiation.
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Fig. 4. Horizontal velocity component contours for different temperature driving potentials; top row: no 

radiation, bottom row: model 

 

The differences between both cases are clearer in Fig. 3, where the temperature distributions along the -axis at 

 and along the -axis at  are plotted and compared for the same temperature driving potentials. The 

temperature field predicted with the  model is very similar to the benchmark problem studied by Moufekkir et al. 

[14]. The temperature field of the  model through the middle portion of the domain is vertically stratified, with 

nearly horizontal isotherms, and thermal boundary layers have formed along the walls. It appears from the isotherms 

that the radiation heat transfer produces a good homogenization of temperature. 

 

   

   

   
 

Fig. 5.Vertical velocity component contours ( for different temperature driving potentials; top row: no 

radiation, bottom row: model 
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Fig. 6.Horizontal velocity component profiles  along -axis at  (top row) and  along -axis at 

 (bottom row) for different temperature driving potentials. 

 

Figs. 4 and 5 show velocity fields for the same temperature driving potentials. The effects of the temperature 

difference  on horizontal velocity component profiles  along -axis at  and  along -axis at 

 are shown in Figure 6. Vertical velocity component profiles  along -axis at  and 

 along -axis at  for different temperature driving potentials are shown in Figure 7
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Fig. 7.Vertical velocity component profiles  along -axis at  (top row) and  along -axis at 

 (bottom row) for different temperature driving potentials. 
 

It is seen that the maximum of both distributions gradually increases with the temperature difference. Indeed, due to 

increasing  the heat transferring in the cavity increases and hence the driven buoyancy force increases. Thus, higher 

velocities are acquired. It is also seen in figures that the difference between the velocity profile for the  model and 

for the pure convection model at each  is considerable. 

It was found previously that when  increases, the natural convection has the great effects on the temperature 

distribution and heat transfer in the cavity. The diffusion, radiative and overall Nusselt number at the walls are 

calculated from the heat fluxes as 

 

 
 

 
 

 
 

where  is temperature dependent heat conductivity and . The temperature dependence of the dynamic 

viscosity is given by the Sutherland model [2] and the heat conductivity is expressed as . 

Table 1 shows computed diffusion and radiation Nusselt number values, and , for the hot and cold wall as a 

function of temperature difference for the mesh M = 60 × 60. We can observe that the Nusselt number  is in the 

range of ≈ 135−580 for the hot and ≈ 82−393 for the cold wall, while the Nusselt number  is in the range of ≈ 

10−14 for the hot and ≈ 13−24 for the cold wall. Therefore,  is much higher than for all cases, 

which indicates that the radiation heat transfer is dominant heat transfer mechanism in the closed cavity. 

 

Tablei: Diffusion And Radiation Nusselt Number Values For The Hot And Cold Wall As A Function Of Temperature 

Difference 

 

 

 

 model without radiation 

hot wall cold wall hot wall cold wall 

            
300 10.384 135.7

69 

146.153 15.68

8 

82.63

1 

98.31

9 

14.33

2 

- 14.33

2 

14.346 - 14.346 

600 10.192 323.0

32 

333.224 17.95

6 

187.3

40 

205.2

96 

14.28

3 

- 14.28

3 

14.243 - 14.243 

 10.054 579.3

97 

589.451 23.49

9 

393.1

92 

416.6

91 

13,81

1 

- 13.81

1 

13.677 - 13.677 

 

VII. CONCLUSION 

In this paper we have implemented  approximation to simulate combined problems involving conductive, 

convective and radiative heat transfer in a 2D square cavity filled with a viscous compressible grey fluid. For the  

model the RTE is a diffusion equation, which is easy to solve with little CPU (Central Processing Unit) demand. The 

model should typically be used for cases with optical thicknesses larger then one. It should be aware of the following 

limitations when using the  model:  model assumes that all surfaces are diffuse. The implementation assumes grey 

radiation. There may be a loss of accuracy, depending on the complexity of the geometry, if the optical thickness is 

small.      

The main advantage of boundary-element based simulation algorithms is in the fact that a part of the solution of the 

underlying problem (the fundamental solution) is used to set up the integral formulation of the problem. This enables 

higher accuracy of the solution of the problem compared to standard techniques such as finite elements or control 
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volume. This is especially true for diffusion or advection-diffusion type problems, which are considered and which 

feature high gradients in the solution.  

In this paper, we consider optical thickness 10, and discover that at this value the  model yielded surprisingly 

accurate values compared to the published benchmark results. The governing equations of combined heat transfer 

were solved simultaneously to obtain the temperature and velocity profiles inside the participating medium.However, 

the model matches very well with the method of discrete ordinates used by Lari et al. [9] to model the radiative heat 

transfer in optical thick media.Based on the results of this analysis, we recommend the use of the  formulation for 

the buoyant flows in optically thick fluids. 
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