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Abstract:- M.A. Ahamed [1] gave the refined and generalized the common fixed point theorem, which have been proved 

by S.C. Arora and C. Sharma [2]. In this paper, we shall improve the theorem of M.A. Ahamed [1]. Also, we establish the 

error estimation as well as the rate of convergence of generalized common fixed point theorem. 
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I. INTRODUCTION 

The concept of Fuzzy sets was investigated by L.A. Zadeh [16] in 1965. Fuzzy metric space was introduced by 

Kramosil and Michalek [10] in 1975. Then in 1994, the notion of fuzzy metric spaces was modified by George and 

Veera-mani [6]. Many researchers have been obtained the common fixed point theorems for self mappings with 

different types of contraction and commu-tativity conditions. Sessa [14] was initiated the weakly commuting maps 

on metric spaces to improve commutativity in fixed point theorems, later on, this method was enlarged to 

compatible maps by Jungck [9]. Then Tas et.al [15] was extended the Jungck’s compatibility conditions to four self 

mappings on complete and compact metric spaces. Recently, Ahamed [1] generalized the improved results of S.C. 

Arora and V. Sharma [2]. 

This paper widely inspired by Tas et al. [15] and Ahamed [1]. We give different approach of Ahamed’s results and 

we establish the error estimation as well as the rate of convergence of common fuzzy fixed point mappings on 

metric spaces. 

 

II. PRELIMINARY NOTES 

Let X be any metric space with the metric d and I = [0, 1] be unit in-terval. A fuzzy set A in a metric space X is said 

to be an approximate quantity if and only if for each α ∈  I the α-level set of A is non empty compact convex set in X 

and supx∈X A(x) = 1. W (X) is the family of all approximate quantities in X. That is, for any α ∈  I, W (X) is given 

by {Aα ∈  IX : Aα is non empty compact convex set with supx∈X A(x) = 1}, where IX is collection of fuzzy subsets 

of X.  

Note that, a set A is more accurate than the set B in W (X), denoted by A⊂B, if and only if  A(x) ≤ B(x) for each x 

∈  X, where A(x), B(x) denotes the membership values of x in X. For   x ∈  X, we write {x} the characteristic 

function of the ordinary subset {x} of X. We denote        W 0(X) = {{x} : x ∈  X}. 

 

For some α ∈  I and A, B ∈  W (X), 

pα(A, B) = inf    d(x, y);           Dα(A, B) = H(Aα, Bα); 

  x∈Aα,y∈Bα 

and    D(A, B) = sup Dα(A, B), p(A, B) = sup pα(A, B); 

  α∈ I α∈ I 

 

where H is the Hausdorff metric induced by the metric d, pα is a non-decreasing function of α and D is a metric on 

W (X). 

Definition 1: [5] Let Y be an arbitrary set, X be a metric linear space. A mapping T : Y → W(X) is said to be a fuzzy 

mapping, if for each y ∈  Y, T y ∈  W(X). Thus if we characterize a fuzzy set Ty in a metric linear space X by a 

member ship function Ty, then Ty(x) is the grade of member ship of x in Ty. 

Note that, a fuzzy mapping T is a fuzzy subset on X×Y with membership function Tx(y). 

Definition 2: [14] Self-mappings f and g on a metric space (X, d) are said to weakly commute if and only if d(fgx, 

gfx) < d(fx, gx) ∀ x ∈  X. 

Definition 3: [9] Self-mappings f and g on a metric space (X, d) are said to be compatible if and only if whenever xn 

is a sequence in X such that limn→∞ fxn = limn→∞ gxn = t  for some t ∈  X, then limn→∞ d(fgxn, gfxn) = 0. 

The following proposition and lemmas are needed in the sequel. 

Proposition 1: [9] Let A, B be compatible self mappings on a complete metric space (X, d). 

If for some t ∈  X, At = Bt, then  ABt = BAt. 

Suppose that limn→∞ Axn = t = limn→∞ Bxn, for some t ∈  X. 
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If A is continuous at t ∈  X, then limn→∞ BAxn = At. 

If A & B are continuous at t ∈  X, then At = Bt and ABt = BAt. 

Lemma 1: [1] If {x0} ⊂ A for each A ∈  W ∗ (X) and x0 ∈  X, then pα(x0, B) ≤ Dα(A, B) for each B ∈  W ∗ (X). 

Lemma 2: [1] pα(x, A) ≤ d(x, y) + pα(y, A),      ∀ x, y ∈  X and A ∈  W ∗ (X). 

Lemma 3: Let (X, d) be a complete metric space and A, B : X → W(X) be fuzzy mappings. Assume that there exist 

c1, c2, c3 ∈  [0, ∞) with c1 + 2c2 < 1 and c2 + c3 < 1, such that for all x, y ∈  X, 

 

D2(Ax, By)  ≤ c1 max{d2(x, y), p2(x, Ax), p2(y, By)} 

 

c2 max{p(x, Ax)p(x, By), p(y, Ax)p(y, By)} 

 

+ c3p(x, By)p(y, Ax).     (2.1) 

 

Then for some x0 ∈  X there exists x1 ∈  X such that {x1} ⊂ Ax0 and the sequence 

{yn} = {Ax0, Bx1, Ax2, Bx3, . . . , Ax2n, Bx2n+1, . . .} (2.2) 

 

is Cauchy. 

Lemma 4: Let x ∈  X, A ∈  W∗ (X) and {x} be fuzzy set with membership function equal to a characteristic function 

of the set {x}. Then {x} ⊂ X ⇐⇒ pα(x, A) = 0 for each α ∈  I. 

 

III. MAIN RESULT 

Ahamed [1] proved the following result; 

Theorem 1: Let 
 ,  X d

 be a complete metric space and 1 2,  T T
 be fuzzy map-pings from X into 

 .W X

 

Assume that there exist 
 1 2 3,  ,  0,  c c c  

 with 1 2 2  1c c 
 and 2 3  1,c c 

 such that for all 

,  ,x y X
 

D2(T1(x), T2(y))  ≤ c1 max{d2(x, y), p2(x, T1(x)), p2(y, T2(y))}  

+ c2 max{p(x, T1(x))p(x, T2(y)), p(y, T1(x))p(y, T2(y))} 

 

    + c3p(x, T2(y))p(y, T1(x)). (3.1) 

Then, there exists z ∈  X such that {z} ⊂ T1(z) and {z} ⊂ T2(z). 

 

In the above result, W∗ (X) is a sub collection of fuzzy subsets of X. In fact, each element in W(X) leads to in 

W∗ (X) but converse is not true, this implies, W(X) ⊂ W∗ (X). So, we establish the modified result of Ahamed’s as 

follows: 

 

Theorem 2: Let (X, d) be a complete metric space, A, B : X → W (X) be fuzzy mappings. Suppose there exist c1, 

c2, c3 ∈  I with c1 + 2c2 < 1 and c2 + c3 < 1, such that for all x, y ∈  X, 

 

D2(Ax, By)  ≤ c1 max{d2(x, y), p2(x, Ax), p2(y, By)}  

                                          + c2 max{p(x, Ax)p(x, By), p(y, Ax)p(y, By)} 

 

    + c3p(x, By)p(y, Ax). (3.2) 

 

Then, 

 

there exists z ∈  X, such that {z} ⊂ Az and {z} ⊂ Bz. 

 

a priori error estimation: 

 

d(xn, xn+1) ≤ (c1 + 2c2)n/2 d(x0, x1) 

and 
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      ∞ 

X 

d(xn, z) ≤  ∑ (c1 + 2c2)n+kd(x0, x1). 

       k=0 

iii) a posteriori error estimation: 

      ∞ 

X 

d(xn, z) ≤  ∑ (c1 + 2c2)kd(xn, xn+1). 

       k=0 

iv) the rate of convergence 

 

d(xn, z) ≤ (c1 + 2c2)n/2 d(x0, z). 

 

Proof: Since lemma 3, for any arbitrary point x0  ∈  X, there exists x1 ∈  X such that {x1} ⊂ Ax0  and for x1  ∈  X 

there exists x2  ∈  X such that {x2} ⊂ Bx1, where Ax0, Bx1 are non-empty compact convex subsets of X. This 

implies that, for x1 ∈  Ax0, there exists x2 ∈  Bx1 such that 

d(x1, x2) ≤ D1(Ax0, Bx1) ≤ D(Ax0, Bx1). (3.3) 

 

⇒ d2(x1, x2) ≤ D2(Ax0, Bx1) 

 

c1 max{d2(x0, x1), p2(x0, Ax0), p2(x1, Bx1)} 

 

c2 max{p(x0, Ax0)p(x0, Bx1), p(x1, Ax0)p(x1, Bx1)} 

 

c3p(x0, Bx1)p(x1, Ax0) 

 

c1 max{d2(x0, x1), d2(x1, x2)} + c2p(x0, x1)p(x0, x2) 

 

c1 max{d2(x0, x1), d2(x1, x2)} 

 

c2 d(x0, x1)[d(x0, x1) + d(x1, x2)]. 

 

Suppose d(x0, x1) < d(x1, x2), then d2(x0, x1) < d2(x1, x2). 

 

⇒ d2(x1, x2) ≤ c1 d2(x1, x2) + 2c2 d(x0, x1)d(x1, x2) 

 

(c1 + 2c2)d2(x1, x2). 

 

This implies that, c1 + 2c2 ≥ 1, which is contradict to c1 + 2c2 < 1. 

∴   d(x0, x1) > d(x1, x2), 

 

=⇒ d2(x1, x2)  <  d2(x0, x1). 

 

=⇒ d2(x1, x2)  ≤ c1 d2(x0, x1) + 2c2 d2(x0, x1) 

(c1 + 2c2) d2(x0, x1). 

 

=⇒ d(x1, x2)  ≤ (c1 + 2c2)1/2 d(x0, x1). 

 

Similarly, 

 

d(x2, x3)  ≤     (c1 + 2c2) d(x0, x1), 

d(x3, x4)  ≤ 

     

(c1 + 2c2)3/2 

  

  d(x0, x1), 

 

  

.        
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.        

.        

d(xn, xn+1)  ≤ 

   

(3.4) (c1 + 2c2)n/2 

 

 d(x0, x1).  

 

Since the lemma 3, for any arbitrary x0 ∈  X, there exists x1, x2 ∈  X such that Ax0 ⊃ {x1} and Bx1 ⊃ {x2}. In this 

process we can construct a cauchy sequence as follows: 

 

Ax2 ⊃ {x3}, Bx3 ⊃ {x4}, Ax4 ⊃ {x5}, Bx5 ⊃ {x6}, . . . 

 

. . . , Ax2n ⊃ {x2n+1}, Bx2n+1 ⊃ {x2n+2}, . . . . 

 

this implies, {x2n+1} ⊂ Ax2n and {x2n+2} ⊂ Bx2n, for n = 0, 1, 2, . . . . 

 

By lemma 2 and the equation 3.4, for each n = 0, 1, 2, . . . we have, 

d2(BAx0 , (BA)2x0) ≤ (c1 + 2c2)2d2(x0, BAx0), 

d2((BA)2x0 , (BA)4x0) ≤ (c1 + 2c2)4d2(x0, BAx0), 

   . 

   . 

   . 

d2((BA)nx0 , (BA)n+2x0) ≤ (c1 + 2c2)2nd2(x0, BAx0), 

=⇒ d((BA)nx0 , (BA)n+2x0) ≤ (c1 + 2c2)nd(x0, BAx0) 

 

Similarly, 

 

d((AB)nx1, (AB)n+1x1)  ≤ (c1 + 2c2)nd(x1, ABx1). 

Now, for some m, n ∈  N consider 

 

d((BA)nx0, (BA)n+mx0)  ≤ d((BA)nx0, (BA)n+2x0) + d((BA)n+2x0, (BA)n+4x0) 

 

+ . . . + d((BA)n+m−2x0, (BA)n+mx0) 

 

≤ (c1 + 2c2)nd(x0, BAx0) + (c1 + 2c2)n+2d(x0, BAx0) 

 

+ . . . + (c1 + 2c2)n+m−2d(x0, BAx0) 

 

≤ [(c1 + 2c2)n + (c1 + 2c2)n+1 + (c1 + 2c2)n+2 

 

+ . . . + (c1 + 2c2)n+m−1]d(x0, BAx0) 

 

≤ (c1 + 2c2)n[1 + (c1 + 2c2) + (c1 + 2c2)2 + (c1 + 2c2)3 

 

 

+ . . . + (c1 + 2c2)m−1]d(x0, BAx0) 

 

≤ 
(c1 + 2c2)n 

d(x0, BAx0). 1 − c1 − 2c2 

 

Since c1 + 2c2 < 1 and the metric d is continuous, 

 

=⇒ lim d((BA)nx0, (BA)n+mx0) = 0. 
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m,n→∞ 

 

Similarly, for some m, n ∈  N 

 

d((AB)nx0, (AB)n+mx0)  ≤ d((AB)nx0, (AB)n+2x0) + d((AB)n+2x0, (AB)n+4x0) 

 

+ . . . + d((AB)n+m−2x0, (AB)n+mx0) 

      ≤ (c1 + 2c2)nd(x0, ABx0) + (c1 + 2c2)n+2d(x0, ABx0) 

+ . . . + (c1 + 2c2)n+m−2d(x0, ABx0) 

      ≤ [(c1 + 2c2)n + (c1 + 2c2)n+1 + (c1 + 2c2)n+2 

+ . . . + (c1 + 2c2)n+m−1]d(x0, ABx0) 

      ≤ (c1 + 2c2)n[1 + (c1 + 2c2) + (c1 + 2c2)2 + (c1 + 2c2)3 

+ . . . + (c1 + 2c2)m−1]d(x0, ABx0) 

      ≤ (c1 + 2c2)n d(x0, ABx0). 

1 − c1 − 2c2 

Since c1 + 2c2 < 1 and the metric d is continuous, this implies that, 

lim m,n→∞ d((AB)nx0 , (AB)n+mx 0) = 0, 

and 

limn→∞ d((BA)nx0, (AB)nx1) ≤ limn→∞ d(x2n, x2n+1)=limn→∞ (c1 + 2c2)nd(x0, x1)=0. 

 

Hence by lemma 3, the sequences (AB)n and (BA)n are converges uniformly in X. Therefore there exists N ∈  N and 

z ∈  X, such that 

limn→∞  (AB)nx1 = z = limn→∞  (BA)nx0,   ∀ n ≥ N. (3.5) 

 

That is, the mappings AB & BA are compatible and there exists z ∈  X, such that {z} ⊂ ABz and {z} ⊂ BAz. This 

implies that, for each α ∈  I 

 

pα(z, Az)  ≤ d(z, x2n+1) + pα(x2n+1, Az) ≤ d(z, x2n+1) + Dα(Ax2n, Az). 

      p(z, Az)  ≤ d(z, x2n+1) + p(x2n+1, Az) 

(3.6)     ≤ d(z, x2n+1) + D(Ax2n, Az). 

From inequality (3.7),    

D2(Ax2n, Az) ≤ c1 max{d2(x2n, z), p2(x2n, Ax2n), p2(z, Az)}  

  + c2 max{p(x2n, Ax2n)p(x2n, Az), p(z, Ax2n)p(z, Az)} 

  + c3p(x2n, Az)p(z, Ax2n)  

 ≤ c1 max{d2(x2n, z), d2(x2n, x2n+1), p2(z, Az)} 

  + c2 max{d(x2n, x2n+1)p(x2n, Az), d(z, x2n+1)p(z, Az)} 

  + c3p(x2n, Az)d(z, x2n+1)  

⇒ limn→∞  D2(Ax2n, Az) ≤ limn→∞  [c1 max{d2(x2n, z), d2(x2n, x2n+1), p2(z, Az)} 

    

  + c2 max{d(x2n, x2n+1)p(x2n, Az), d(z, x2n+1)p(z, Az)} 

  + c3p(x2n, Az)d(z, x2n+1)]  

D2(z, Az) ≤ c1 max{d2(z, z), d2(z, z), p2(z, Az)}  

  + c2 max{d(z, z)p(z, Az), d(z, z)p(z, Az)}  

  + c3p(z, Az)d(z, z)  
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=⇒ D2(z, Az) ≤ c1p2(z, Az) 

∴   D(z, Az) ≤  

(c1)1

/2 p(z, Az). 

Now, equation (3.6), implies that, 

pα(z, Az) ≤ (c1)1/2 p(z, Az). 

Since (c1)1/2 < 1, so we get p(z, Az) = 0. Similarly we prove that p(z, Bz) = 0. That is, there exist z∈X, such that 

{z} ⊂ Az and {z} ⊂ Bz. Also we know that BAz ⊂ Bz and ABz ⊂ Az and from equation (3.5) there exists z ∈  X 

such that {z} ⊂ ABz ⊂ Az and {z} ⊂ BAz ⊂ Bz. 

 

ii) Priori error estimation: 

 

From triangle inequality of metric and equation 3.4, 

 

d(xn, xn+p)  ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xn+p−1, xn+p) 

 

 

≤ (c1+2c2)1/2 d(xn-1, xn) + (c1+2c2)1/2 d(xn, xn+1)  

 

. . . +   (c1+2c2)1/2 d(xn+p-2, xn+p-1) 

. 

. 

.≤ 

                        

(c1 + 2c2)n/2 d(x0, x1) + (c1 + 2c2)(n+1)/2 d(x0, x1) 

       

 

+ . . . + (c1 + 2c2)(n+p-1)/2 d(x0, x1)  

   

d(xn, xn+p)     ≤   n 

p-1 

(c1 + 2c2)(n+k)/2 d(x0, x1). ∑ 

k=0 
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iii) Posteriori error estimation: 

From triangle inequality of metric and equation 3.4, 

 

d(xn, xn+q)  ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xn+q−1, xn+q) 

 

 

≤ d(xn, xn+1) + (c1+2c2)1/2 d(xn, xn+1)  

 

. . . +   (c1+2c2)1/2 d(xn+q-2, xn+q-1) 

. 

. 

. 

 

≤ 

                        

  d(xn, xn+1) + (c1 + 2c2)(n+1)/2 d(xn, xn+1) 

       

 

+ . . . + (c1 + 2c2)(p-1)/2d(xn, xn+1)  

   

d(xn, xn+q)     ≤   n 

q-1 

(c1 + 2c2)k/2 d(xn, xn+1). ∑ 

k=0 

 

  

 

 

 

 

 

 

iv) Now, we establish the rate of convergence of fuzzy mappings A, B as follows; for an even number n ∈  N, 

 

d(xn, z)  =  d(xn, BAz) 

 

d(BAxn−2, BAz) 

 

(c1 + 2c2)d(xn−2, BAz) 

 

(c1 + 2c2)d(BAxn−4, BAz) 

 

(c1 + 2c2)2d(BAxn−6, BAz) 

. 

. 

. 

≤    (c1 + 2c2)n/2 d(BAx0, BAz), 

 

   p-1  

⇒ limp→∞ d(xn, xn+p) 

 
≤ limp→∞ ∑ (c1 + 2c2)(n+k)/2d(x0, x1) 

   k=0   

d(xn, z) ≤ 

∞ 

(c1 + 2c2)(n+k)/2 d(x0, x1) ∑ 

k=0 

   q-1  

⇒ limq→∞ d(xn, xn+q) ≤ Limq→∞ ∑ (c1 + 2c2)k/2 d(xn, xn+1) 

   k=0   

d(xn, z)     ≤ 

∞ 

(c1 + 2c2)k/2  d(xn, xn+1) ∑ 

k=0 
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and for an odd number n ∈  N, 

 

d(xn, z)  =  d(xn, ABz) 

 

d(ABxn−2, ABz) 

 

(c1 + 2c2)d(xn−2, ABz) 

 

(c1 + 2c2)d(ABxn−4, ABz) 

 

(c1 + 2c2)2d(ABxn−6, ABz) 

. 

. 

.≤ (c1 + 2c2)(n-1)/2  d(ABx1, ABz), 

 

 

⇒    d(xn, z)   ≤ { 

(c1 + 2c2)n/2  d(BAx0, BAz), if n is even number. 

  

(c1 + 2c2)(n-1)/2  d(ABx1, ABz), if n is odd number. 

 

Since, for any N ∈  N, {x2N+1} ⊂ ABx2N−1  and {x2N } ⊂ ABx2N−2, 

 

∴  d(xn, z)  ≤ (c1 + 2c2)(n-1)/2 d(ABx1, ABz) 

 

                                                             ≤  (c1 + 2c2)n/2  d(BAx0, BAz) 

 

 ≤   (c1 + 2c2)n/2 d(x0, z). 

for n = 0, 1, 2, 3, . . . , which proves the rate of convergence. 

 

Example 1: Let X = [0, 1] be a metric space with the metric d(x, y) = |x − y|, ∀  x, y ∈  X. Define fuzzy mappings A, 

B from X into W(X), such that for any x ∈  X, Ax is a characteristic functions for {(3/4) x} and Bx is a characteristic 

functions for {x2}. Assume x0 = 1 ∈  X, then, 

 

{3/4} = {x1} ⊂ Ax0 

{(3/4)2} = {x2} ⊂ Bx1, 

 

. 

. 

. 

 

{(3/4) 
2(2n -1) 

} = {x2n} ⊂ {B2n−1}, 
 

{(3/4) 
2(2n –(1/2)) 

} = {x2n+1} ⊂ {A2n},  … . 
 

 

for n = 0, 1, 2, 3, . . . . 

 

 

This implies that, for each x, y ∈  X, we can find c1 = (9/16) , c2 = 0, c3<1,  

 

(or c1 = 0, c2 = 

 9 

, c3 < 

2

3 

) with c1 + 2c2 < 1 & c2 + c3 < 1, such that 

32 

 

   32  

 D2(Ax, By) ≤ c1 max {d2(x, y), p2(x, Ax), p2(y, By)} 
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     +c2  max {p(x, Ax)p(x, By), p(y, Ax)p(y, By)} 

      + c3p(x, By)p(y, Ax). 

 

Hence the characteristic function for {0} is the common fixed point of A and B in W (X). 

Priori error:  

 

 

 

where ԑ0 = d(x0, x1). 

 

 

Posteriori error: 

 

 

 

where ԑn = d(xn, xn+1). 

 

Rate of convergence:  

                     

 

Remark 1: In the above example, if c1 = 0, c2 = 
   9 

and  c3 < 
   9 

then also, 
  32   32 

 

Priori error, Posteriori error and Rate of convergence are remains the same. 

Remark 2: In the process of simplifying the contraction equation 3.7, either p(x, By) = 0 or  

p(y, Ax) = 0. So, by theorem 2, we can establish the following corollary. 

Corollary 1: Let (X, d) be a complete metric space, A, B : X → W (X) be fuzzy mappings. Assume that there exist 

c1, c2 ∈  I with c1 + c2 < 1, such that for all x, y ∈  X 

 

D2(Ax, By)  ≤ c1 max{d2(x, y), p2(x, Ax), p2(y, By)} 

 

c2 max{p(x, Ax)p(x, By), p(y, Ax)p(y, By)}.             (3.7) 

 

Then, there exists z ∈  X, such that {z} ⊂ Az and {z} ⊂ Bz. 

 

The proof of above corollary follows the proof of theorem 2, also, the error estimations and rate of convergence are 

same. 

 

IV. REFERENCES 
[1] M.A. Ahamed, Fixed Point Theorems in Fuzzy Metric Spaces, Journal of the Egyptian Mathematical Society, 22(2014), 59-62. 
[2] S.C. Arora, V. Sharma,Fixed Point Theorems for Fuzzy Mappings, Fuzzy Sets and Systems, 110(2000), 127-130. 

[3] I. Beg, A. Azam, Fixed Points of Asymptotically Regular Multivalued Mappings, J.Austral.Math.Soc., 53(1992), 313-326. 

[4] R.K. Bose, D. Sahani, Fuzzy Mappings and Fixed Point Theorems, Fuzzy Sets and Systems, 21(1987), 53-58. 
[5] L. Ciric, M. Abbas, B. Damjanovic, R. Saadati, Common Fuzzy Fixed Point Theorems in Ordered Metric Spaces, Mathematical and 

Computer Modelling, 53(2011), 1737-1741. 

[6] A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets and Systems, 64(1994), 395-399. 
[7] S. Heilpern, Fuzzy Mappings and Fixed Point Theorem, J. Math.Anal.Appl., 83(1981), 566-569. 

[8] G. Jungck, Commuting Mappings and Fixed Points, Amer. Math. Monthly, 83(1976), 261-263. 

[9] G. Jungck, Compatible Mappings and Common Fixed Points, lnternat. J. Math. Math., 9(1986), 771-773. 
[10] I. Kramosil and Michalek, Fuzzy Metric and Statistical Metric Spaces, Kybernetica, 11(1975), 326-334. 

[11] B.S. Lee, S.J. Cho, A Fixed Point Theorems for Contractive Type Fuzzy Mappings, Fuzzy Sets and Systems, 61(1994), 309-312. 

[12] S.B. Nadler, Multivalued Contraction Mappings, Pac.J.Math., 30(1969), 475-488. 
[13] J.Y. Park, J.U. Jeong, Fixed Point Theorems for Fuzzy Mappings, Fuzzy Sets Syst. 87(1997), 111-116. 

[14] S. Sessa, On a Weak Commutativity Condition of Mappings in Fixed Point Considerations, Publ.Inst.Math., 32(1982), 149-153. 

[15] K. Tas, M. Telci, B. Fisher, Common Fixed Point Theorem for Compat-ible Mappings, Int. J. Math. Sci., 19(1996), 451-456. 
[16] L.A. Zadeh, Fuzzy Sets, Inform. Contr., 8(1965), 338-353. 

d(xn, z) ≤ 
   (c1)n/2 

  1-(c1)1/2 ԑ0  =  (9/16)n/2, for  n = 1, 2, 3, … 

d(xn, z) ≤ 
    ԑn 

  1-(c1)1/2 = 4ԑn , for  n = 1, 2, 3, … 

d(xn, z) ≤    (c1)n/2  d(x0, z) = (9/16)n/2.  
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