Fuzzy Fixed Point Mappings on Metric Space

J. Ravinder ${ }^{1}$, S. Srinivasan ${ }^{2}$
${ }^{1,2}$ Department of Mathematics and Actuarial Science, B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai-48, India.

Abstract

M.A. Ahamed [1] gave the refined and generalized the common fixed point theorem, which have been proved by S.C. Arora and C. Sharma [2]. In this paper, we shall improve the theorem of M.A. Ahamed [1]. Also, we establish the error estimation as well as the rate of convergence of generalized common fixed point theorem. Key Words:- Fuzzy mappings, Fuzzy fixed point mappings, Fixed point theorem, Metric spaces.

I. INTRODUCTION

The concept of Fuzzy sets was investigated by L.A. Zadeh [16] in 1965. Fuzzy metric space was introduced by Kramosil and Michalek [10] in 1975. Then in 1994, the notion of fuzzy metric spaces was modified by George and Veera-mani [6]. Many researchers have been obtained the common fixed point theorems for self mappings with different types of contraction and commu-tativity conditions. Sessa [14] was initiated the weakly commuting maps on metric spaces to improve commutativity in fixed point theorems, later on, this method was enlarged to compatible maps by Jungck [9]. Then Tas et.al [15] was extended the Jungck's compatibility conditions to four self mappings on complete and compact metric spaces. Recently, Ahamed [1] generalized the improved results of S.C. Arora and V. Sharma [2].
This paper widely inspired by Tas et al. [15] and Ahamed [1]. We give different approach of Ahamed's results and we establish the error estimation as well as the rate of convergence of common fuzzy fixed point mappings on metric spaces.

II. PRELIMINARY NOTES

Let X be any metric space with the metric d and $\mathrm{I}=[0,1]$ be unit in-terval. A fuzzy set A in a metric space X is said to be an approximate quantity if and only if for each $\alpha \in I$ the α-level set of A is non empty compact convex set in X and supx $\in X A(x)=1$. W (X) is the family of all approximate quantities in X. That is, for any $\alpha \in I$, $W(X)$ is given by $\{A \alpha \in I X: A \alpha$ is non empty compact convex set with supx $\in X A(x)=1\}$, where IX is collection of fuzzy subsets of X.
Note that, a set A is more accurate than the set B in $W(X)$, denoted by $A \subset B$, if and only if $A(x) \leq B(x)$ for each x $\in X$, where $A(x), B(x)$ denotes the membership values of x in X. For $x \in X$, we write $\{x\}$ the characteristic function of the ordinary subset $\{x\}$ of X. We denote $W 0(X)=\{\{x\}: x \in X\}$.

For some $\alpha \in \mathrm{I}$ and $\mathrm{A}, \mathrm{B} \in \mathrm{W}(\mathrm{X})$,

where H is the Hausdorff metric induced by the metric d , $\mathrm{p} \alpha$ is a non-decreasing function of α and D is a metric on W (X).
Definition 1: [5] Let Y be an arbitrary set, X be a metric linear space. A mapping $T: Y \rightarrow W(X)$ is said to be a fuzzy mapping, if for each $y \in Y, T y \in W(X)$. Thus if we characterize a fuzzy set Ty in a metric linear space X by a member ship function $T y$, then $T y(x)$ is the grade of member ship of x in Ty.
Note that, a fuzzy mapping T is a fuzzy subset on $X \times Y$ with membership function $T x(y)$.
Definition 2: [14] Self-mappings f and g on a metric space (X, d) are said to weakly commute if and only if $d(f g x$, $\mathrm{gfx})<\mathrm{d}(\mathrm{fx}, \mathrm{gx}) \forall \mathrm{x} \in \mathrm{X}$.
Definition 3: [9] Self-mappings f and g on a metric space (X, d) are said to be compatible if and only if whenever $x n$ is a sequence in X such that $\operatorname{limn} \rightarrow \infty \mathrm{fxn}=\operatorname{limn} \rightarrow \infty \mathrm{gxn}=\mathrm{t}$ for some $\mathrm{t} \in \mathrm{X}$, then $\operatorname{limn} \rightarrow \infty \mathrm{d}(\mathrm{fgxn}$, gfxn$)=0$.
The following proposition and lemmas are needed in the sequel.
Proposition 1: [9] Let A, B be compatible self mappings on a complete metric space (X, d).
If for some $t \in X, A t=B t$, then $A B t=B A t$.
Suppose that limn $\rightarrow \infty A x n=t=\operatorname{limn} \rightarrow \infty$ Bxn, for some $t \in X$.

If A is continuous at $\mathrm{t} \in \mathrm{X}$, then $\operatorname{limn} \rightarrow \infty \mathrm{BAxn}=\mathrm{At}$.
If $A \& B$ are continuous at $t \in X$, then $A t=B t$ and $A B t=B A t$.
Lemma 1: [1] If $\{x 0\} \subset A$ for each $A \in W *(X)$ and $x 0 \in X$, then $p \alpha(x 0, B) \leq D \alpha(A, B)$ for each $B \in W *(X)$.
Lemma 2: [1] $p \alpha(x, A) \leq d(x, y)+p \alpha(y, A), \quad \forall x, y \in X$ and $A \in W *(X)$.
Lemma 3: Let (X, d) be a complete metric space and $A, B: X \rightarrow W(X)$ be fuzzy mappings. Assume that there exist $\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3 \in[0, \infty)$ with $\mathrm{c} 1+2 \mathrm{c} 2<1$ and $\mathrm{c} 2+\mathrm{c} 3<1$, such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,
$\mathrm{D} 2(\mathrm{Ax}, \mathrm{By}) \leq \mathrm{c} 1 \max \{\mathrm{~d} 2(\mathrm{x}, \mathrm{y}), \mathrm{p} 2(\mathrm{x}, \mathrm{Ax}), \mathrm{p} 2(\mathrm{y}, \mathrm{By})\}$
$c 2 \max \{p(x, A x) p(x, B y), p(y, A x) p(y, B y)\}$
$+c 3 p(x, B y) p(y, A x)$.
Then for some $\mathrm{x} 0 \in \mathrm{X}$ there exists $\mathrm{x} 1 \in \mathrm{X}$ such that $\{\mathrm{x} 1\} \subset \mathrm{Ax} 0$ and the sequence
$\{y n\}=\{A x 0, B x 1, A x 2, B x 3, \ldots, A x 2 n, B x 2 n+1, \ldots\}$
is Cauchy.
Lemma 4: Let $x \in X, A \in W *(X)$ and $\{x\}$ be fuzzy set with membership function equal to a characteristic function of the set $\{x\}$. Then $\{x\} \subset X \Longleftrightarrow p \alpha(x, A)=0$ for each $\alpha \in I$.

III. MAIN RESULT

Ahamed [1] proved the following result;
Theorem 1: Let (X, d) be a complete metric space and T_{1}, T_{2} be fuzzy map-pings from X into $W^{*}(X)$. Assume that there exist $c_{1}, c_{2}, c_{3} \in[0, \infty)$ with $c_{1}+2 c_{2}<1$ and $c_{2}+c_{3}<1$, such that for all $x, y \in X$,
D2(T1 (x), T2(y)) $\leq \mathrm{c} 1 \max \{\mathrm{~d} 2(\mathrm{x}, \mathrm{y}), \mathrm{p} 2(\mathrm{x}, \mathrm{T} 1(\mathrm{x})), \mathrm{p} 2(\mathrm{y}, \mathrm{T} 2(\mathrm{y}))\}$
$+c 2 \max \{p(x, T 1(x)) p(x, T 2(y)), p(y, T 1(x)) p(y, T 2(y))\}$
$+\mathrm{c} 3 \mathrm{p}(\mathrm{x}, \mathrm{T} 2(\mathrm{y})) \mathrm{p}(\mathrm{y}, \mathrm{T} 1(\mathrm{x}))$.
Then, there exists $\mathrm{z} \in \mathrm{X}$ such that $\{\mathrm{z}\} \subset \mathrm{T} 1(\mathrm{z})$ and $\{\mathrm{z}\} \subset \mathrm{T} 2(\mathrm{z})$.
In the above result, $W *(X)$ is a sub collection of fuzzy subsets of X. In fact, each element in $W(X)$ leads to in $\mathrm{W} *(\mathrm{X})$ but converse is not true, this implies, $\mathrm{W}(\mathrm{X}) \subset \mathrm{W} *(\mathrm{X})$. So, we establish the modified result of Ahamed's as follows:

Theorem 2: Let (X, d) be a complete metric space, A, B : X $\rightarrow \mathrm{W}(\mathrm{X})$ be fuzzy mappings. Suppose there exist c1, $\mathrm{c} 2, \mathrm{c} 3 \in \mathrm{I}$ with $\mathrm{c} 1+2 \mathrm{c} 2<1$ and $\mathrm{c} 2+\mathrm{c} 3<1$, such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,

$$
\begin{align*}
& \text { D2(Ax, By) } \leq \mathrm{c} 1 \max \left\{\begin{array}{l}
\mathrm{d} 2(x, y), p 2(x, A x), p 2(y, B y)\} \\
\\
\\
+\mathrm{c} 2 \max \{p(x, A x) p(x, B y), p(y, A x) p(y, B y)\}
\end{array}\right. \\
& \quad+c 3 p(x, B y) p(y, A x) .
\end{align*}
$$

Then,
there exists $\mathrm{z} \in \mathrm{X}$, such that $\{\mathrm{z}\} \subset \mathrm{Az}$ and $\{\mathrm{z}\} \subset \mathrm{Bz}$.
a priori error estimation:
$d(x n, x n+1) \leq(c 1+2 c 2) n / 2 d(x 0, x 1)$
and

```
    \infty
X
d(xn, z) \leq \sum (c1 + 2c2)n+kd(x0, x1).
    k=0
iii) a posteriori error estimation:
    \infty
X
d(xn, z) \leq \sum (c1 + 2c2)kd(xn, xn+1).
    k=0
iv) the rate of convergence
```

$\mathrm{d}(\mathrm{xn}, \mathrm{z}) \leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n} / 2 \mathrm{~d}(\mathrm{x} 0, \mathrm{z})$.
Proof: Since lemma 3, for any arbitrary point $x 0 \in X$, there exists $x 1 \in X$ such that $\{x 1\} \subset A x 0$ and for $x 1 \in X$ there exists $\mathrm{x} 2 \in \mathrm{X}$ such that $\{\mathrm{x} 2\} \subset \mathrm{Bx} 1$, where $\mathrm{Ax} 0, \mathrm{Bx} 1$ are non-empty compact convex subsets of X . This implies that, for $\mathrm{x} 1 \in \mathrm{Ax} 0$, there exists $\mathrm{x} 2 \in \mathrm{Bx} 1$ such that

```
d}(\textrm{x}1,\textrm{x}2)\leq\textrm{D}1(\textrm{Ax}0,Bx1)\leq\textrm{D}(\textrm{Ax}0,Bx1)
# d2(x1, x2) \leq D2(Ax0, Bx1)
```

$\mathrm{c} 1 \max \{\mathrm{~d} 2(\mathrm{x} 0, \mathrm{x} 1), \mathrm{p} 2(\mathrm{x} 0, \mathrm{Ax} 0), \mathrm{p} 2(\mathrm{x} 1, \mathrm{Bx} 1)\}$
$c 2 \max \{p(x 0, A x 0) p(x 0, B x 1), p(x 1, A x 0) p(x 1, B x 1)\}$
c3p(x0, Bx1)p(x1, Ax0)
$\mathrm{c} 1 \max \{\mathrm{~d} 2(\mathrm{x} 0, \mathrm{x} 1), \mathrm{d} 2(\mathrm{x} 1, \mathrm{x} 2)\}+\mathrm{c} 2 \mathrm{p}(\mathrm{x} 0, \mathrm{x} 1) \mathrm{p}(\mathrm{x} 0, \mathrm{x} 2)$
$\mathrm{c} 1 \max \{\mathrm{~d} 2(\mathrm{x} 0, \mathrm{x} 1), \mathrm{d} 2(\mathrm{x} 1, \mathrm{x} 2)\}$
$\mathrm{c} 2 \mathrm{~d}(\mathrm{x} 0, \mathrm{x} 1)[\mathrm{d}(\mathrm{x} 0, \mathrm{x} 1)+\mathrm{d}(\mathrm{x} 1, \mathrm{x} 2)]$.
Suppose $\mathrm{d}(\mathrm{x} 0, \mathrm{x} 1)<\mathrm{d}(\mathrm{x} 1, \mathrm{x} 2)$, then $\mathrm{d} 2(\mathrm{x} 0, \mathrm{x} 1)<\mathrm{d} 2(\mathrm{x} 1, \mathrm{x} 2)$.
$\Rightarrow \mathrm{d} 2(\mathrm{x} 1, \mathrm{x} 2) \quad \leq \quad \mathrm{c} 1 \mathrm{~d} 2(\mathrm{x} 1, \mathrm{x} 2)+2 \mathrm{c} 2 \mathrm{~d}(\mathrm{x} 0, \mathrm{x} 1) \mathrm{d}(\mathrm{x} 1, \mathrm{x} 2)$
$(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{d} 2(\mathrm{x} 1, \mathrm{x} 2)$.

This implies that, $\mathrm{c} 1+2 \mathrm{c} 2 \geq 1$, which is contradict to $\mathrm{c} 1+2 \mathrm{c} 2<1$.
$\therefore \mathrm{d}(\mathrm{x} 0, \mathrm{x} 1)>\mathrm{d}(\mathrm{x} 1, \mathrm{x} 2)$,

```
= d2(x1, x2) < d2(x0, x1).
= }=>\quad\textrm{d}2(\textrm{x}1,\textrm{x}2)\leq\quad\textrm{c}1\textrm{d}2(\textrm{x}0,\textrm{x}1)+2\textrm{c}2\textrm{d}2(\textrm{x}0,\textrm{x}1
(c1 + 2c2) d2(x0, x1).
= d
```

Similarly,

```
d(x2,x3) \leq (c1 + 2c2) d(x0, x1),
d(x3, x4) \leq (c1 + 2c2)3/2 d(x0, x1),
```

```
d(xn, xn+1) \leq (c1 +2c2)n/2 d(x0, x1).
```

Since the lemma 3, for any arbitrary $\mathrm{x} 0 \in \mathrm{X}$, there exists $\mathrm{x} 1, \mathrm{x} 2 \in \mathrm{X}$ such that $\mathrm{Ax} 0 \supset\{\mathrm{x} 1\}$ and $\mathrm{Bx} 1 \supset\{\mathrm{x} 2\}$. In this process we can construct a cauchy sequence as follows:

```
Ax2\supset{x3},Bx3 \supset{x4},Ax4 \supset{x5},Bx5 \supset{x6},\ldots.
\ldots,Ax2n\supset{x2n+1},Bx2n+1 \supset {x2n+2},\ldots..
```

this implies, $\quad\{x 2 n+1\} \subset A x 2 n$ and $\{x 2 n+2\} \subset B x 2 n$, for $n=0,1,2, \ldots$.
By lemma 2 and the equation 3.4 , for each $n=0,1,2, \ldots$ we have,

$\begin{aligned} & \text { d2(BAx0 } \\ & \text { d2((BA) } 2 x 0 \end{aligned}$	$\begin{aligned} & ,(\mathrm{BA}) 2 \times 0) \\ & ,(\mathrm{BA}) 4 \mathrm{x} 0) \end{aligned}$	$\begin{aligned} & \leq(\mathrm{c} 1+2 \mathrm{c} 2) 2 \mathrm{~d} 2(\mathrm{x} 0, \mathrm{BAx} 0), \\ & \leq(\mathrm{c} 1+2 \mathrm{c} 2) 4 \mathrm{~d} 2(\mathrm{x} 0, \mathrm{BAx} 0), \end{aligned}$
d2((BA)nx0	, (BA) $\mathrm{n}+2 \mathrm{x} 0$)	$\leq(\mathrm{c} 1+2 \mathrm{c} 2) 2 \mathrm{nd} 2(\mathrm{x} 0, \mathrm{BAx} 0)$,
$=\Rightarrow \mathrm{d}((\mathrm{BA}) \mathrm{nx} 0$, (BA) $\mathrm{n}+2 \mathrm{x} 0)$	$\leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{nd}(\mathrm{x} 0, \mathrm{BAx} 0)$

Similarly,
$\mathrm{d}((\mathrm{AB}) \mathrm{nx} 1,(\mathrm{AB}) \mathrm{n}+1 \mathrm{x} 1) \leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{nd}(\mathrm{x} 1, \mathrm{ABx} 1)$.
Now, for some $m, n \in N$ consider
$d((B A) n x 0,(B A) n+m x 0) \leq d((B A) n x 0,(B A) n+2 x 0)+d((B A) n+2 x 0,(B A) n+4 x 0)$
$+\ldots+\mathrm{d}((\mathrm{BA}) \mathrm{n}+\mathrm{m}-2 \mathrm{x} 0,(\mathrm{BA}) \mathrm{n}+\mathrm{mx} 0)$
$\leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{nd}(\mathrm{x} 0, \mathrm{BAx} 0)+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+2 \mathrm{~d}(\mathrm{x} 0, \mathrm{BAx} 0)$
$+\ldots+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+\mathrm{m}-2 \mathrm{~d}(\mathrm{x} 0, \mathrm{BAx} 0)$
$\leq[(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+1+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+2$
$+\ldots+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+\mathrm{m}-1] \mathrm{d}(\mathrm{x} 0$, BAx0 $)$
$\leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}[1+(\mathrm{c} 1+2 \mathrm{c} 2)+(\mathrm{c} 1+2 \mathrm{c} 2) 2+(\mathrm{c} 1+2 \mathrm{c} 2) 3$
$+\ldots+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{m}-1] \mathrm{d}(\mathrm{x} 0, \mathrm{BAx} 0)$
$\begin{aligned} & (\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n} \\ & \leq \\ & 1-\mathrm{c} 1-2 \mathrm{c} 2\end{aligned} \quad \mathrm{~d}(\mathrm{x} 0, \mathrm{BAx} 0)$.

Since $c 1+2 c 2<1$ and the metric d is continuous,

```
= lim d((BA)nx0,(BA)n+mx0)=0.
```

$\mathrm{m}, \mathrm{n} \rightarrow \infty$
Similarly, for some $m, n \in N$

```
d((AB)nx0, (AB)n+mx0) \leqd((AB)nx0, (AB)n+2x0) + d((AB)n+2x0, (AB)n+4x0)
```

$+\ldots+\mathrm{d}((\mathrm{AB}) \mathrm{n}+\mathrm{m}-2 \mathrm{x} 0,(\mathrm{AB}) \mathrm{n}+\mathrm{mx} 0)$
$\leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{nd}(\mathrm{x} 0, \mathrm{ABx} 0)+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+2 \mathrm{~d}(\mathrm{x} 0, \mathrm{ABx} 0)$
$+\ldots+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+\mathrm{m}-2 \mathrm{~d}(\mathrm{x} 0, \mathrm{ABx} 0)$
$\leq[(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+1+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+2$
$+\ldots+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}+\mathrm{m}-1] \mathrm{d}(\mathrm{x} 0, \mathrm{ABx} 0)$
$\leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n}[1+(\mathrm{c} 1+2 \mathrm{c} 2)+(\mathrm{c} 1+2 \mathrm{c} 2) 2+(\mathrm{c} 1+2 \mathrm{c} 2) 3$
$+\ldots+(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{m}-1] \mathrm{d}(\mathrm{x} 0, \mathrm{ABx} 0)$
$\leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n} \quad \mathrm{d}(\mathrm{x} 0, \mathrm{ABx} 0)$.
$1-\mathrm{c} 1-2 \mathrm{c} 2$

Since $\mathrm{c} 1+2 \mathrm{c} 2<1$ and the metric d is continuous, this implies that, $\lim m, n \rightarrow \infty \quad d((A B) n x 0 \quad,(A B) n+m x \quad 0)=0$, and

```
limn->\infty d((BA)nx0,(AB)nx1) \leq limn->\infty d(x2n, x2n+1)=limn->\infty(c1 + 2c2)nd(x0, x1)=0.
```

Hence by lemma 3, the sequences $(A B) n$ and (BA)n are converges uniformly in X. Therefore there exists $N \in N$ and $z \in X$, such that
$\operatorname{limn} \rightarrow \infty(\mathrm{AB}) \mathrm{nx} 1=\mathrm{z}=\operatorname{limn} \rightarrow \infty(\mathrm{BA}) \mathrm{nx} 0, \quad \forall \mathrm{n} \geq \mathrm{N}$.
That is, the mappings $A B \& B A$ are compatible and there exists $z \in X$, such that $\{z\} \subset A B z$ and $\{z\} \subset B A z$. This implies that, for each $\alpha \in \mathrm{I}$

$$
\begin{align*}
& \mathrm{p} \alpha(\mathrm{z}, \mathrm{Az}) \leq \mathrm{d}(\mathrm{z}, \mathrm{x} 2 \mathrm{n}+1)+\mathrm{p} \alpha(\mathrm{x} 2 \mathrm{n}+1, \mathrm{Az}) \leq \mathrm{d}(\mathrm{z}, \mathrm{x} 2 \mathrm{n}+1)+\mathrm{D} \alpha(\mathrm{Ax} 2 \mathrm{n}, \mathrm{Az}) \\
& \quad \mathrm{p}(\mathrm{z}, \mathrm{Az}) \leq \mathrm{d}(\mathrm{z}, \mathrm{x} 2 \mathrm{n}+1)+\mathrm{p}(\mathrm{x} 2 \mathrm{n}+1, A z) \\
& \quad \leq \mathrm{d}(\mathrm{z}, \mathrm{x} 2 \mathrm{n}+1)+\mathrm{D}(\mathrm{Ax} 2 \mathrm{n}, A \mathrm{~A}) . \tag{3.6}
\end{align*}
$$

From inequality (3.7),

```
D2(Ax2n, Az) \leq c1 max{d2(x2n, z), p2(x2n, Ax2n), p2(z,Az)}
    +c2 max{p(x2n, Ax2n)p(x2n, Az), p(z, Ax2n)p(z, Az)}
    +c3p(x2n, Az)p(z, Ax2n)
    s c1 max{d2(x2n, z), d2(x2n, x2n+1), p2(z,Az)}
    +c2 max{d(x2n, x2n+1)p(x2n,Az), d(z, x2n+1)p(z,Az)}
    +c3p(x2n,Az)d(z, x2n+1)
| limn->\infty D2(Ax2n,Az) \leq limn->\infty [c1 max{d2(x2n, z), d2(x2n, x2n+1), p2(z,Az)}
    +c2 max{d(x2n, x2n+1)p(x2n, Az), d(z, x2n+1)p(z,Az)}
    +c3p(x2n, Az)d(z, x2n+1)]
D2(z,Az) \leq c1 max{d2(z, z), d2(z, z), p2(z,Az)}
    +c2 max{d(z, z)p(z, Az),d(z, z)p(z, Az)}
    + c3p(z, Az)d(z, z)
```

| $=\Rightarrow \mathrm{D} 2(\mathrm{z}, \mathrm{Az})$ | $\leq \mathrm{c} 1 \mathrm{p} 2(\mathrm{z}, \mathrm{Az})$ |
| :--- | :--- | :--- |
| | $\therefore \mathrm{c} 1) 1$ |
| $\therefore \mathrm{D}(\mathrm{z}, \mathrm{Az})$ | $\leq \quad 12 \mathrm{p}(\mathrm{z}, \mathrm{Az})$. |

Now, equation (3.6), implies that, $\mathrm{p} \alpha(\mathrm{z}, \mathrm{Az}) \leq(\mathrm{c} 1) 1 / 2 \mathrm{p}(\mathrm{z}, \mathrm{Az})$.
Since $(c 1) 1 / 2<1$, so we get $p(z, A z)=0$. Similarly we prove that $p(z, B z)=0$. That is, there exist $z \in X$, such that $\{\mathrm{z}\} \subset \mathrm{Az}$ and $\{\mathrm{z}\} \subset \mathrm{Bz}$. Also we know that $\mathrm{BAz} \subset \mathrm{Bz}$ and $\mathrm{ABz} \subset \mathrm{Az}$ and from equation (3.5) there exists $\mathrm{z} \in \mathrm{X}$ such that $\{\mathrm{z}\} \subset \mathrm{ABz} \subset \mathrm{Az}$ and $\{\mathrm{z}\} \subset \mathrm{BAz} \subset \mathrm{Bz}$.
ii) Priori error estimation:

From triangle inequality of metric and equation 3.4,
$d(x n, x n+p) \leq d(x n, x n+1)+d(x n+1, x n+2)+\ldots+d(x n+p-1, x n+p)$
$\leq(\mathrm{c} 1+2 \mathrm{c} 2) 1 / 2 \mathrm{~d}(\mathrm{xn}-1, \mathrm{xn})+(\mathrm{c} 1+2 \mathrm{c} 2) 1 / 2 \mathrm{~d}(\mathrm{xn}, \mathrm{xn}+1)$
$\ldots+(c 1+2 c 2) 1 / 2 d(x n+p-2, x n+p-1)$

$$
\begin{aligned}
& . \leq \quad(c 1+2 c 2) n / 2 \quad d(x 0, x 1)+(c 1+2 c 2)(n+1) / 2 \quad d(x 0, x 1) \\
& d(x n, x n+p) \leq \ldots+(c 1+2 c 2)(n+p-1) / 2 \quad d(x 0, x 1) \\
& \leq \quad n \sum_{k=0}^{p-1}(c 1+2 c 2)(n+k) / 2 d(x 0, x 1) .
\end{aligned}
$$

| | | $\mathrm{p}-1$ |
| :--- | :--- | :--- | :--- |
| \leq | $\operatorname{limp} \rightarrow \infty$ | $\sum_{\mathrm{k}=0}$ |
| | $\sum_{\mathrm{k}=0}^{\infty}$ | $(\mathrm{c} 1+2 \mathrm{c} 2)(\mathrm{n}+\mathrm{k}) / 2 \mathrm{~d}(\mathrm{x} 0, \mathrm{x} 1)$ |
| | | |

iii) Posteriori error estimation:

From triangle inequality of metric and equation 3.4,
$d(x n, x n+q) \leq d(x n, x n+1)+d(x n+1, x n+2)+\ldots+d(x n+q-1, x n+q)$
$\leq \mathrm{d}(\mathrm{xn}, \mathrm{xn}+1)+(\mathrm{c} 1+2 \mathrm{c} 2) 1 / 2 \mathrm{~d}(\mathrm{xn}, \mathrm{xn}+1)$
$\ldots+(c 1+2 c 2) 1 / 2 d(x n+q-2, x n+q-1)$
.
$\leq \quad \mathrm{d}(\mathrm{xn}, \mathrm{xn}+1)+(\mathrm{c} 1+2 \mathrm{c} 2)(\mathrm{n}+1) / 2 \mathrm{~d}(\mathrm{xn}, \mathrm{xn}+1)$
$+\ldots+(\mathrm{c} 1+2 \mathrm{c} 2)(\mathrm{p}-1) / 2 \mathrm{~d}(\mathrm{xn}, \mathrm{xn}+1)$
$d(x n, x n+q) \leq \quad n \sum_{k=0}^{q-1}(c 1+2 c 2) k / 2 d(x n, x n+1)$.
q-1
$\Rightarrow \operatorname{limq} \rightarrow \infty \mathrm{d}(\mathrm{xn}, \mathrm{xn}+\mathrm{q}) \leq \operatorname{Limq} \rightarrow \infty \sum(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{k} / 2 \mathrm{~d}(\mathrm{xn}, \mathrm{xn}+1)$
$\mathrm{k}=0$
d(xn, z)
$\leq \sum_{\mathrm{k}=0}^{\infty} \quad(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{k} / 2 \mathrm{~d}(\mathrm{xn}, \mathrm{xn}+1)$
iv) Now, we establish the rate of convergence of fuzzy mappings A, B as follows; for an even number $n \in N$, $\mathrm{d}(\mathrm{xn}, \mathrm{z})=\mathrm{d}(\mathrm{xn}, \mathrm{BAz})$
d(BAxn-2, BAz)
$(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{d}(\mathrm{xn}-2, \mathrm{BAz})$
$(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{d}(\mathrm{BAxn}-4, \mathrm{BAz})$
$(\mathrm{c} 1+2 \mathrm{c} 2) 2 \mathrm{~d}(\mathrm{BAxn}-6, \mathrm{BAz})$
.
$\leq(c 1+2 \mathrm{c} 2) \mathrm{n} / 2 \mathrm{~d}(\mathrm{BAx} 0, B A z)$,

```
and for an odd number n }\inN
d(xn, z) = d(xn, ABz)
d(ABxn-2, ABz)
(c1 + 2c2)d(xn-2,ABz)
(c1 + 2c2)d(ABxn-4,ABz)
(c1 + 2c2)2d(ABxn-6,ABz)
.
.\leq(c1+2c2)(n-1)/2 d(ABx1, ABz),
```

 \((c 1+2 c 2) n / 2 d(B A x 0, B A z), \quad\) if \(n\) is even number.
 \(\Rightarrow \mathrm{d}(\mathrm{xn}, \mathrm{z}) \leq \quad\{\)
 $(\mathrm{c} 1+2 \mathrm{c} 2)(\mathrm{n}-1) / 2 \mathrm{~d}(\mathrm{ABx} 1, \mathrm{ABz})$,
if n is odd number.
Since, for any $N \in N,\{x 2 N+1\} \subset A B x 2 N-1$ and $\{x 2 N\} \subset A B x 2 N-2$,

```
\therefore d(xn, z) \leq(c1+2c2)(n-1)/2 d(ABx1, ABz)
    \leq(c1 + 2c2)n/2 d(BAx0, BAz)
```

$\leq(\mathrm{c} 1+2 \mathrm{c} 2) \mathrm{n} / 2 \mathrm{~d}(\mathrm{x} 0, \mathrm{z})$.
for $\mathrm{n}=0,1,2,3, \ldots$, which proves the rate of convergence.
Example 1: Let $X=[0,1]$ be a metric space with the metric $d(x, y)=|x-y|, \forall x, y \in X$. Define fuzzy mappings A, B from X into $W(X)$, such that for any $x \in X, A x$ is a characteristic functions for $\{(3 / 4) x\}$ and $B x$ is a characteristic functions for $\{x 2\}$. Assume $x 0=1 \in X$, then,

$$
\{3 / 4\}
$$

$$
\begin{array}{lll}
\{3 / 4\} & = & \{x 1\} \subset A x 0 \\
\{(3 / 4) 2\} & = & \{\mathrm{x} 2\} \subset \mathrm{Bx} 1
\end{array}
$$

$$
\begin{align*}
2(2 n-1) & =\{x 2 n\} \subset\{B 2 n-1\}, \tag{3/4}\\
2(2 n-(1 / 2)) & =\{x 2 n+1\} \subset\{A 2 n\}, \ldots \tag{3/4}
\end{align*}
$$

for $\mathrm{n}=0,1,2,3, \ldots$

This implies that, for each $x, y \in X$, we can find $c 1=(9 / 16), c 2=0, c 3<1$,

$$
\begin{gathered}
\text { (or } \mathrm{c} 1=0, \mathrm{c} 2=\frac{9}{32}, \mathrm{c} 3<\frac{2}{2} \text {) with } \mathrm{c} 1+2 \mathrm{c} 2<1 \& \mathrm{c} 2+\mathrm{c} 3<1 \text {, such that } \\
\mathrm{D} 2(\mathrm{Ax}, \mathrm{By}) \leq \mathrm{c} 1 \max \{\mathrm{~d} 2(\mathrm{x}, \mathrm{y}), \mathrm{p} 2(\mathrm{x}, \mathrm{Ax}), \mathrm{p} 2(\mathrm{y}, \mathrm{By})\}
\end{gathered}
$$

```
+c2 max {p(x, Ax)p(x, By), p(y, Ax)p(y, By)}
+c3p(x, By)p(y, Ax).
```

Hence the characteristic function for $\{0\}$ is the common fixed point of A and B in $W(X)$.
Priori error:

$$
\mathrm{d}(\mathrm{xn}, \mathrm{z}) \leq \frac{(\mathrm{c} 1) \mathrm{n} / 2}{1-(\mathrm{c} 1) \mathrm{l} / 2} \varepsilon 0=(9 / 16) \mathrm{n} / 2, \quad \text { for } \mathrm{n}=1,2,3, \ldots
$$

where $\varepsilon 0=\mathrm{d}(\mathrm{x} 0$,
$\mathrm{x} 1)$.

Posteriori error:

$$
\mathrm{d}(\mathrm{xn}, \mathrm{z}) \quad \leq \frac{\mathrm{n}}{1-(\mathrm{c} 1) 1 / 2}=4 \varepsilon \mathrm{n}, \quad \text { for } \mathrm{n}=1,2,3, \ldots
$$

where $\mathrm{en}=\mathrm{d}(\mathrm{xn}$,
$\mathrm{xn}+1)$.
Rate of convergence:

$$
\mathrm{d}(\mathrm{xn}, \mathrm{z}) \leq(\mathrm{c} 1) \mathrm{n} / 2 \mathrm{~d}(\mathrm{x} 0, \mathrm{z})=(9 / 16) \mathrm{n} / 2
$$

Remark 1: In the above example, if $\mathrm{c} 1=0, \mathrm{c} 2=$

Priori error, Posteriori error and Rate of convergence are remains the same.
Remark 2: In the process of simplifying the contraction equation 3.7, either $p(x, B y)=0$ or $p(y, A x)=0$. So, by theorem 2 , we can establish the following corollary.
Corollary 1: Let (X, d) be a complete metric space, $\mathrm{A}, \mathrm{B}: \mathrm{X} \rightarrow \mathrm{W}(\mathrm{X})$ be fuzzy mappings. Assume that there exist $\mathrm{c} 1, \mathrm{c} 2 \in \mathrm{I}$ with $\mathrm{c} 1+\mathrm{c} 2<1$, such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$
$\mathrm{D} 2(\mathrm{Ax}, \mathrm{By}) \leq \mathrm{c} 1 \max \{\mathrm{~d} 2(\mathrm{x}, \mathrm{y}), \mathrm{p} 2(\mathrm{x}, \mathrm{Ax}), \mathrm{p} 2(\mathrm{y}, \mathrm{By})\}$
$c 2 \max \{p(x, A x) p(x, B y), p(y, A x) p(y, B y)\}$.
Then, there exists $\mathrm{z} \in \mathrm{X}$, such that $\{\mathrm{z}\} \subset \mathrm{Az}$ and $\{\mathrm{z}\} \subset \mathrm{Bz}$.
The proof of above corollary follows the proof of theorem 2, also, the error estimations and rate of convergence are same.

IV. REFERENCES

[1] M.A. Ahamed, Fixed Point Theorems in Fuzzy Metric Spaces, Journal of the Egyptian Mathematical Society, 22(2014), 59-62.
[2] S.C. Arora, V. Sharma,Fixed Point Theorems for Fuzzy Mappings, Fuzzy Sets and Systems, 110(2000), 127-130.
[3] I. Beg, A. Azam, Fixed Points of Asymptotically Regular Multivalued Mappings, J.Austral.Math.Soc., 53(1992), 313-326.
[4] R.K. Bose, D. Sahani, Fuzzy Mappings and Fixed Point Theorems, Fuzzy Sets and Systems, 21(1987), 53-58.
[5] L. Ciric, M. Abbas, B. Damjanovic, R. Saadati, Common Fuzzy Fixed Point Theorems in Ordered Metric Spaces, Mathematical and Computer Modelling, 53(2011), 1737-1741.
[6] A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
[7] S. Heilpern, Fuzzy Mappings and Fixed Point Theorem, J. Math.Anal.Appl., 83(1981), 566-569.
[8] G. Jungck, Commuting Mappings and Fixed Points, Amer. Math. Monthly, 83(1976), 261-263.
[9] G. Jungck, Compatible Mappings and Common Fixed Points, Internat. J. Math. Math., 9(1986), 771-773.
[10] I. Kramosil and Michalek, Fuzzy Metric and Statistical Metric Spaces, Kybernetica, 11(1975), 326-334.
[11] B.S. Lee, S.J. Cho, A Fixed Point Theorems for Contractive Type Fuzzy Mappings, Fuzzy Sets and Systems, 61(1994), 309-312.
[12] S.B. Nadler, Multivalued Contraction Mappings, Pac.J.Math., 30(1969), 475-488.
[13] J.Y. Park, J.U. Jeong, Fixed Point Theorems for Fuzzy Mappings, Fuzzy Sets Syst. 87(1997), 111-116.
[14] S. Sessa, On a Weak Commutativity Condition of Mappings in Fixed Point Considerations, Publ.Inst.Math., 32(1982), 149-153.
[15] K. Tas, M. Telci, B. Fisher, Common Fixed Point Theorem for Compat-ible Mappings, Int. J. Math. Sci., 19(1996), 451-456.
[16] L.A. Zadeh, Fuzzy Sets, Inform. Contr., 8(1965), 338-353.

