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Abstract-   In this paper a comparative analysis has been done among Conformable fractional derivative and Caputo 

derivative for obtaining its inverse problem. The Laplace decomposition method is employed for obtaining the solution 

for both derivatives. We assembled that the temperature distribution in the case of Caputo’s derivative increases as the 

value of α decreases from 1 to 0. Adomian decomposition method has been used for this research as it is the most efficient 

method. Several illustrative examples are given to demonstrate the effectiveness of the present method.  
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I. INTRODUCTION 

In the past few years, fractional calculus and their derivatives met across ample attainment in several fields of 

research viz. science and technology [2-4]. Fractional derivatives are quite elastic in elaborating viscoelastic 

nature.[70] Therefore, in the past ten years the analysis of fractional diffusion equations has fascinated extreme 

devotion.[66,67] Consider that if the preliminary concentration distribution and boundary conditions are known, a 

whole retrieval of the unidentified solution can be obtained by solving a well-posed forward problem.[68,69] 

Though, in few practical implementation problems, the boundary data can only be estimated on a share of the 

boundary or few facts in the result province.[64,65] This may give rise to an ill-posed problem of the fractional heat 

diffusion equation . In the paper, we analyze an inverse heat conduction problem (IHCP) given in the form of 

fractional derivative [62-63]. This type of ill-posed problem is crucial in many fields of engineering sciences [6-8]. 

This is known as the ill-posed backward determination problem that is in behavior unstable due to the unidentified 

solution. The inverse problems related to fractional differential equations are quite difficult. The individuality of an 

inverse problem for one-dimensional fractional diffusion equation was given in [9]. Zheng et al. and Wei et al. [10] 

have given the regularization method for Cauchy problem of the time fractional advection-dispersion equation in a 

space-unbounded region. Numerical results by utilizing different methodologies were being proposed in [11, 12]. 

Tuan et. al [13, 14] have analyzed the inverse problems related to spectral for the fractional diffusion equation.  

Though, with the recent advancement in the area of fractional differential equations [3-6]; there can be a lot of 

diffusion problems which can be studied that can feature fractional order derivatives in aspect of time or space 

variables or both. Therefore, a lot of methods have been realized over a time to find the solution of many models 

which includes both the analytical solution and the numerical solution was given by Yan et al. [7], an estimated 

decomposition technique for non-integer diffusion-wave model [8] and the most famous and efficient method that is 

Adomian decomposition technique [9-13]. There are several other techniques which is given by many renowned 

authors that is the symmetry technique for the solution of nonlinear heat equation by Ahmad et al. [14], the Aboodh 

decomposition technique for nonlinear and time –fractional diffusion equations by Nurudeen et al. [15-16], the q-

homotopy analysis technique [17], the double Laplace transform method for fractional heat equation by Anwar et al. 

[18] and finally the Wiener-Hopf method [19-21] some heat problems as compare to different methods.  

Further, in the present research work, the time-fractional diffusion models in one and two dimensions will be studied 

and investigated. There are two possibilities which we have considered here is defining the time-fractional diffusion 

models in Caputo’s derivative [4] sense and the new evolved derivative that is Conformable fractional derivative 

sense [6]. Here we employ the famous decomposition method of Laplace integral transform that is Adomian [10] as 

the technique to analyze, see [23-32, 34], also see [33] for the advancement of the conformable fractional derivative 

which is applicable for its alteration by [6] in this research work. [Base Paper References] So the present research 

has been motivated by [38] and the results of the direct problem and the inverse problem have been validated in case 

of both derivatives that is Caputo derivative, Conformable fractional derivative.  

The paper is organized as follows: Section 2 presents the basic definitions for the two fractional derivatives. In 

section 3, we summarize the introduction of inverse problems for fractional heat diffusion equation. Various 
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decomposition methods are studied in Section 4 Section 5 deals with the numerical results. Section 6 elaborates the 

attained results whereas In Section 7 the conclusion has been given. 

 

II. BASIC DEFINITION OF THE TWO-FRACTIONAL DERIVATIVES 

The following part includes the two most crucial definitions of fractional derivative that is Caputo fractional 

derivative and conformable fractional derivative that will be discussed in the following section and considered for 

the research. 

Caputo’s Derivative  

The fractional derivative given by Caputo for a function v (t) [3-4] as follows: 

 

 

with  the gamma function which has the integral illustration as follows: 

 
The following properties are satisfied by Caputo fractional derivative:  

 

 

 

 

 
To see more properties of Caputo Derivative see ref. [1-2]. 

Laplace Transform for Caputo’s Derivative  

The Laplace integral Transform for Caputo’s basic definition for fractional order derivative as given in equation 

(2.1) which can be transformed as follows: 

 
Mittag-Leffler Function  

The Mittag-Leffler function [4] for fractional derivative is defined as follows:  

 
Conformable Derivative  

The new definition of the fractional derivative that is conformable derivative was given by Jawad et al. [6] states the 

two definitions that is left and right definitions of the fractional conformable derivatives which can be stated as 

follows:  

 

 
then define, 

 

In some cases  to specify the conformable fractional derivatives of order α. additionally, if 

the conformable fractional derivative of f of order α exists, then simply we can transform the definition and call f is 

α-differentiable. 
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We should remark that  Furthermore, it can be defined from this definition that conformable 

fractional derivative coincides with R-L derivative for a constant multiple and gives the following definition:  

 
and 

                                  
where v is a differentiable function. It should be noted that the definitions (2.5)-(2.6) are local derivatives, see 

reference [5-6] for more details and [33] for the original research work. [39] 

Some Useful Properties of Conformable Derivative  

Assume  be the operator which is known as the fractional derivative of order α. For α=1, T1 satisfies the following 

properties: 

 

 

 

 

 
To see more properties of Caputo Derivative see ref. [1-2]. 

Laplace Transform for Caputo’s Derivative  

The Laplace integral Transform for Caputo’s basic definition for fractional order derivative as given in equation 

(2.1) which can be transformed as follows: 

 
Mittag-Leffler Function  

The Mittag-Leffler function [4] for fractional derivative is defined as follows:  

 
Conformable Derivative  

The new definition of the fractional derivative that is conformable derivative was given by Jawad et al. [6] states the 

two definitions that is left and right definitions of the fractional conformable derivatives which can be stated as 

follows:  

 

 
then define, 

 

In some cases  to specify the conformable fractional derivatives of order α. additionally, if 

the conformable fractional derivative of f of order α exists, then simply we can transform the definition and call f is 

α-differentiable. 

We should remark that  Furthermore, it can be defined from this definition that conformable 

fractional derivative coincides with R-L derivative for a constant multiple and gives the following definition:  

 
and 

                                  
where v is a differentiable function. It should be noted that the definitions (2.5)-(2.6) are local derivatives, see 

reference [5-6] for more details and [33] for the original research work. [39] 

Some Useful Properties of Conformable Derivative  
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Assume  be the operator which is known as the fractional derivative of order α. For α=1, T1 satisfies the following 

properties: 

 

 

 

 

 
         

III. LAPLACE DECOMPOSITION METHODS 

Let us consider the initial-value problem of nonhomogeneous time-fractional partial differential equation of the state 

is illustrated as: 

 
with  

                        

                           

 

where  denotes for the derivative of v fractional order α; f(x,t) is the source term, and L and N are the linear and 

nonlinear fractional differential operators, respectively. Therefore, we assume conditions of α utilizing the above 

definitions as below:  

When derivative is in Caputo’s derivative sense  

Let us consider that α to be illustrated in the Caputo’s fractional derivative sense, the following theorems are given 

as:  

Theorem 1. Consider the initial-value problem (1.10) with the case (1.11) declares the following solution in 

Caputo’s derivative sense: 

 
Proof. 

Taking the Laplace Transform in t to both sides of (1.10) with situation (1.10) illustrates  

 
Applying the inversion formulation of Laplace on (1.12) gives   

 
Now the function v(x,t) and N(v(x,t)) by the solution of the series represented as follows:  

 
where Am’s are the adomian polynomials see reference [10]; we obtain  
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Thus, corresponding v0(x,t) with the expressions from non-homogenous and initial condition, and the rest vm(x,t) 

follow serially as illustrated below:  

 
 

Therefore, the estimated logical solution of equations (1.12) and (1.13) is obtained by the series  

 
When derivative  is in Conformable derivative sense  

Let us consider the condition of α to be illustrated in the conformable fractional derivative sense. Also, before 

illustrating the approach it should be noted that the application of the general conformable derivative definition in 

(1.5) for α  (n1,n) , (a=0).  

Theorem 2.  

Let us consider the initial value problem (1.10 with the case (1.11) agrees the below solution in the conformable 

derivative sense:  

 
Proof. 

Firstly, equation (4.1) utilizing general definition of conformable derivative that is equation (2.4) as  

 
or 

 
Here [α] is the least integer of α. As in above, the Laplace transform arise from (4.10) and the case (4.2) the below 

expression as: 

 
Then by taking the inverse Laplace transform of the above equation and further as in exceeding equation the 

regressive formulation illustrated as follows:  
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Here the estimated analytical solution of (4.1)-(4.2) is illustrated by the following series:  

 
 

IV. COMPARISON OF RESULTS 

In this section our main goal is to make comparisons between Caputo’s and fractional conformable derivatives 

solutions of direct and inverse problems presented in Examples 1-3. The temperature distributions in each case 

would be investigated by learning the outcome of changing α ranging from 0 to 1. The comparison tables are 

presented in Tables 1-3 with conforming graphical representations represented in Fig.7-9. 

 

4.1 Example One  

In example one, it was perceived from Fig. 1 that the temperature distribution in the case of Caputo’s derivative 

increases as the value of α decreases from 1 to 0 ; while opposite trend is perceived in the case of fractional 

conformable derivative as shown in Fig. 2. However it should be noted that the two are the same at α=1 and also the 

temperature distribution is seen when α=0 in case of Caputo’s fractional derivative while it diverges in conformable 

sense. For this see Table 1. and Fig. 7. The Table 1. illustrates that the difference between Direct problem and 

inverse problem in case of both derivative is observed and the absolute difference between both derivative is also 

depicted and validated by the graph of direct problem.  

Table.1 Comparison of Caputo’s and Fractional Conformable derivative solutions of example.1 at M=11, t=2, 

x=π/3. 

Values 

of 

alpha 

Direct 

Problem  

Direct Problem  Inverse 

Problem  

Inverse 

Problem  

Inverse 

Problem 

Relationship 

between Direct 

Problem and 

Inverse 

Problem  

Relationship 

between Direct 

Problem and 

Inverse Problem 

 Caputo  

Derivative  

Conformable 

Derivative 

Caputo 

Derivative  

Conform

able 

Derivativ

e 

Absolute  

Difference  

Absolute 

Difference 

(Caputo 

Derivative )  

Absolute 

Difference 

(Conformable 

Derivative ) 

0.0 0.500000 - 0.500000 - - - - 

0.1 0.487485 -1.5625 0.36568 -1.6589 2.0247 0.121805 0.0964 

0.3 0.348997 -0.306019 0.2500 -0.4 0.65 0.098997 0.1 

0.5 0.2150 -0.038 0.2156 -0.028 0.2436 -0.0006 -0.01 

0.7 0.1998 0.084 0.1956 0.078 0.1176 0.0042 0.006 

0.9 0.183940 0.1573 0.1876 0.1452 0.0424 -0.00366 0.0121 

 

Validation of Results  
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Fig. 7. : Temperature plots for comparison of solutions of Example One for Inverse Problem 

 
Fig. 8. : Temperature plots for comparison of solutions of Example One for Direct Problem of 

 

Example One  

In example two, it was perceived from both Fig. 3 and 4. that the temperature distribution in the case of Caputo’s 

and fractional conformable derivative decreases as the value of α increases from 0 to 1. However it should be noted 

that the two are the same at α=1 and the temperature distribution is also seen when α=0 in case of Caputo’s 

fractional derivative when it diverges in conformable sense. See Table 2. and Fig. 8. and Fig. 8.The Table 2. 

illustrates that the difference between Direct problem and inverse problem in case of both derivative is observed and 

the absolute difference between both derivative is also depicted and validated by the graph of direct problem.  

 

Table.2 Comparison of Caputo’s and Fractional Conformable derivative solutions of example.2 at M=21, t=0.6, 

x=0.7. 

Values 

of 

alpha 

Direct 

Problem  

Direct Problem  Inverse 

Problem  

Inverse 

Problem  

Inverse 

Problem 

Relationship 

between 

Direct 

Problem and 

Inverse 

Problem  

Relationship 

between Direct 

Problem and 

Inverse Problem 

 Caputo  

Derivative  

Conformable 

Derivative 

Caputo 

Derivative  

Conform

able 

Derivativ

e 

Absolute  

Difference 

(Caputo 

and 

Conformab

le  for 

Inverse 

Problem)  

Absolute 

Difference 

(Caputo 

Derivative for 

Direct and 

Inverse 

Problem  )  

Absolute 

Difference 

(Conformable 

Derivative for 

Direct and Inverse 

Problem  ) 

0.0 1.15866 X - 1.2563X - - - - 
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1018 1015 

0.1 1.43653 X 

1017 

1.129X 1019 2.567 X 108 1.35 X 

1017 

1.217X 

1017 

-1.13047 

X109  

-0.088 

0.3 2.38508 X 

1013  

1.63626 X 1013 2.35 X 1013 1.4256 X 

108 

0.9244 X 

1013 

0.03508  0.21066 

0.5 2.67164 X 

1011   

300.13 1.5 X 1018 350 1.54 X 

1018 

1.17164 X 

10-7 

-49.87 

0.7 561.961 0.28394 512.693 0.3256 512.3674 49.5936 -0.04166 

0.9 0.326371 0.313401 1.2563X 

1015 

- - -0.929929 0.313 

 
Fig. 9 Temperature plots for comparison of solutions of Example Two for Inverse Problem 

 
Fig. 10 Temperature plots for comparison of solutions of Example Two for Inverse Problem 

 

Example Three  

Example three has the same elucidation with example one. One can easily see that there is a very little difference 

and upon fixing y variable we reached at example one’s solution. Therefore, see Table 3. and Fig.11 respectively.  

Table 3. Comparison of Caputo’s and Fractional Conformable derivative solutions of example.3 at M=21, t=0.6, 

x= , y= . 

Values 

of 

alpha 

Direct 

Problem  

Direct Problem  Inverse 

Problem  

Inverse 

Problem  

Inverse 

Problem 

Relationship 

between 

Direct 

Problem and 

Inverse 

Problem  

Relationship 

between Direct 

Problem and 

Inverse Problem 

 Caputo  

Derivative  

Conformable 

Derivative 

Caputo 

Derivative  

Conforma

ble 

Absolute  

Difference 

Absolute 

Difference 

Absolute 

Difference 
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Derivative (Caputo and 

Conformabl

e  for 

Inverse 

Problem)  

(Caputo 

Derivative for 

Direct and 

Inverse 

Problem  )  

(Conformable 

Derivative for 

Direct and 

Inverse Problem  

) 

0.0 0.241845 - 0.231763 - - - - 

0.1 0.175102 -1.61978 0.19 -1.65 1.84 -0.014898 0.04 

0.3 0.110547 -0.391489 0.12 -0.3856 0.5056 -0.009453 -0.005889 

0.5 0.103409 -0.126223 0.11 -0.12563 0.23563 -0.006591 -0.000593 

0.7 0.0966441 -0.00544053 0.09256 -0.005485 0.098045 0.0040841 0.00004447 

0.9 0.0909496 0.0642243 0.0905 0.0685698 -   

 

 
Fig. 11 Temperature plots for comparison of solutions of Example Three. 

 
Fig. 12 Temperature plots for comparison of solutions of Example Three for Inverse Problem 

 

V. CONCLUSION 

In conclusion, the one and two-dimensional fractional heat diffusion models including fractional order derivative in 

time have been investigated. The fractional orders assumed here involve the Caputo’s and the new fractional 

conformable derivatives. Here the Laplace integral transform method in union with the decomposition method by 

Adomian is employed as a tool for this research. We assembled that the temperature distribution in the case of 

Caputo’s derivative increases as the value of α decreases from 1 to 0; while opposite trend is perceived in examples 

1 and 3. We have considered here the inverse problem of the for conformable and Caputo’s derivative. The opposite 

trend has been obtained in comparison with the direct problem and has been validated with the graph exist. Though 
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it should be noted that the two are the same at α=1 and also the temperature distribution is realized when α=0 in case 

of Caputo’s fractional derivative while it diverges in conformable sense in all the three examples. We observed that 

in case of Caputo fractional derivative the solution is positive and in case of conformable fractional derivative the 

solution is negative.  
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