
International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 035 ISSN: 2319-1058

Malware Detection in Android Devices using

System calls under Dynamic Analysis

Leesha Aneja
1
, Sakshi Babbar

2

1,2
GD Goenka University, Gurugram, India

Abstract- This paper is focused on Android malware detection using system calls under dynamic analysis. Basically, the

two main analysis techniques utilized for Android Malware detection are:Static Analysis and Dynamic Analysis. Static

analysis ,which is used for Android malware detection makes use of signatures to detect malicious applications. The

features are extracted from the application without executing it. It can accurately detect malware by extracting signatures

from test data and then comparing the test data with the signature samples of virus and benign samples. But, this

examination experiences code obfuscation procedures which the Malware creators utilize to sidestep from static discovery

strategies. Therefore, it is important to focus on dynamic analysis where code of an application is analyzed at the time of

it’s execution. System calls have been heavily utilized to detect malicious behavior of applications under dynamic

Analysis.As,Current state-of-the-art research shows that recently, researchers and other organizations prefer applying

machine learning methods for malware analysis and detection .Hence, this work is focused on observing the system call

logs, constructing the robust dataset utilizing the same and classifying application as benign or malware with the help of

machine learning models.Moreover,it involves validating the performance of these models using different evaluation

metrices and identifying the best predictive model.An experimentation is further done based on intuitive realization to

eventually confirm that an application from a certain category demands similar system calls utilized by other applications

in that category.Our analysis reveals the similarities and differences between benign and malware system calls invoked by

applications of certain category and shows how frequenciesof these system calls help us in analyzing the behavior of

malicious activity during run time.

Keywords:Malwares,Android Malware Detection,Static Analysis, Dynamic Analysis,System Calls,Machine Learning

I. INTRODUCTION

Mobile phones have become the necessity of modern human lives to store our valuable information such as

passwords, reminders, messages, photos, videos and social contacts. The advent in mobile technology has made

human life easier and more efficient. However, at the same time, our excessive dependency on mobile devices has

drawn attention of malware authors and cyber criminals leading to large number of cyber-attacks. Nowadays, with

the digitization of trivial daily-life tasks ,people have become highly dependent on the mobile phones. Major players

in the mobile market are - Apple's iOS and Google's Android that brings new security techniques with a host of

additional features. iOS malware rate in comparison to Android Malware is not too acute. Amongst all, the major

concern of security threat is on Android smartphones. The key reason for it is that it is open source and allow to

download applications from unsafe sites. So, it is important to develop robust and efficient Android Malware

detection system in order to protect our sensitive data from cyber-attacks on Android platform[1].

As Android has become the prime target for cybercrimes by means of malware and viruses.Approximately 85.1%

market share of android system gives us the view of its comparatively higher user base. The key reason for this is ,it

does not restrict its users to install the applications from unsafe sites apart from the official store. Irrespective of the

updates over the past few years, security remains the ultimate battleground in the field of Android mobile

phones.There is a constant increase innew android malware samples every passing year as shown in figure 1.

Securing Android mobile devices from malicious applications, have become an active area of research from the past

few years.

Fig. 1. Android Malware Rate[2]

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 036 ISSN: 2319-1058

Lot of Emphasis has been given on Android Malware detection.There have been different approaches for the same

which are broadly categorized into Static and Dynamic.Static analysis , makes use of signatures to detect malicious

applications. The features are extracted from the application without executing it. It can accurately detect malware

by extracting signatures from test data and then comparing the testdata with the signature samples of virus and

benign samples.Itis an approach that includes analyzing the code of an application without executing it.Android

applications are stored in .apk file. This .apk file is a zip heap of AndroidManifest.xml, classes.dex and different

other files. Reverse Engineering is utilized for feature extraction. This is done using different tools like apktool.The

AndroidManifest.xml document contains a great deal of permissions that are used for static examination.This

philosophy is asset and time productive as the application is not executed. As mentioned,these most routinely used

static components are the Permissions. Since these are isolated from the application AndroidManifest.xml and effect

the malware area rate to a high degree, extensive research has been made with these as components furthermore

combined with various components expelled from meta-data open in Google Play-Store, for instance, version name,

version no., author's name, last updated time, etc.DREBIN [23] presents a wide static investigation and utilizes

features from the Manifest file including intent filters using Support Vector Machine(SVM) as a machine learning

algorithm. The consequences of the examination appeared that DREBIN distinguished 94% of malware with low

false alarm.But, this examination experiences code confusion procedures ,the Malware creators utilize to sidestep

from static discovery strategies. One of extremely mainstream avoidance procedure is the Update Attack: an

application is introduced on the cell phone and when the application gets an upgrade, the malignant substance is

downloaded andintroduced as a component. This cannot be identified by static investigation strategies which will

filter just the considerate application. Thus, dynamic analysis came as a solution for this problem.

Dynamic Analysis,which is also referred to as behavioral analysis, is utilized to study and analyse the runtime

behavior of applications . As a rule, this procedure checks for API calls, framework calls, system calls, IP address

,network traffic and so forth. This strategy is valuable when the source code of an application is obfuscated.The

main fundamental building block of dynamic investigation is system calls.In computing,a system call is the

programmatic way in which a computer program request a service from the kernel of the Operating System.As

android uses Linux 2.6 kernel, applications make use of services of kernel with the help of system calls. For

instance, whenever a user wants to make a call through dialer application, telephony manager in application

framework receives the request. The user call is then converted in library call by Dalvik Virtual Machine(DVM),

that finally results in various system calls to kernel. Thus, request from all applications is passed through system call

interface before the execution. There are more than 250 types of system calls utilized by Android OS for functions

like allocating memory, accessing files etc. Capturing these calls give the detailed behavior of the application.

Furthermore, frequency of occurrence of system calls is considered/ taken as the proper metrics for defining

application‟s behavior.It has been heavily utilized to detect malicious behavior of applications under dynamic

Analysis.

Our approach is mainly based on system call log generation. In our study, the system call log information of various

benign and malware application is collected with the help of an environment like Genymotion for extraction of

system calls and creation of robust dataset.Then after,with the help of machine learning algorithms ,we have

classified applications as malware or benign.AsMachine learning is an application of artificial intelligence (AI) that

provides systems the ability to automatically learn the data model and make predictions. The purpose of this work

was to determine the malware on the basis of the behavior of system calls by using classification methods that result

in good accuracy and identification of the best predictive model for this study.But this strategy alone is not effective

for prediction.So, there was a need to understand whether similar category based applications invoke similar system

calls.If that is the case,then malware prediction can be done in a better way by formulating the behavior of a certain

category based application and testing an X application from that category to classify it as malware or benign by

comparing it with its general behavior of invoking system calls.So,an attempt was made to explore the possibility

based on intuitive realization to eventually confirm that an application from a certain category demands similar

system calls utilized by other applications in that category,which can further help in better prediction of an

application as a malware if there exists any deviation from the expected behavior.

1.1 Contributions Of The Paper

The main contributions of the paper are highlighted as follows:

1. Toutilize an environment like Genymotion to extract system calls and create robust dataset.

2. Toextract the key system calls that govern the behavior of malware and benign applications using machine

learning.

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 037 ISSN: 2319-1058

3. To integrate machine learning models with domain of Android and to validate the performance of these

models to predict malware attacks.

4. To perform deep analysis of utilization of system calls by benign and malicious applications.

5. To analyze the key patterns of various system calls by dividing the applications in categories.

The further organization of the paper proceeds as follows.Section 2 provides literature review. Section 3 describes

the Dynamic Analysis and the need of Machine learning to capture Malwares.Section 4 illustrates the methodology.

Section 5 showcases results and discussions.

II. RELATED WORK

The capability to early distinguish malware applications is essential to ensure user's security.Android apps can be

tagged, reported, and removed from the market and their signatures can be black-listed. This can be viewed as a

classification problem and, accordingly, many authors have utilized machine learning over different features of

Android application. In [37], the authors use permissions and control flow graphs along with Support Vector

Machines (SVMs) to differentiate malware from good applications (“goodware” in what follows). Androdialysis [3]

explores the intents of each application as features for the classification task.

As discussed,our aim is to classify the unknown sample as benign or malicious based on the behavior of their

system calls using machine learning.In computing,a system call is the programmatic way in which a computer

program request a service from the kernel of the Operating System.A system call is a way for the applications to

interact with OS.It has been heavily utilized to detect malicious behavior of applications under dynamic Analysis.

There has been a lot of research in the field of Malware Detection. In [7], a novel dynamic analysis method named

Component Traversal is proposed that can automatically execute the code routines of each given Android

application (app) as completely as possible. Taindroid is another dynamic examination framework which catches the

system information for breaking down applications. In another examination by the creators of Maline have proposed

a malware recognition instrument, in view of following frame-work calls and order them in view of machine

learning calculations.Shabtai et al. discussed a behavior based anomaly detection system for detecting meaningful

deviations in a mobile applications network behavior by detecting mobile malware with self-updating capabilities.

The detection of such can be performed based on applications‟ network traffic patterns only.Many Researchers have

utilized system call features for malicious application detection .In their work Schmidt et al.[22] proposed intrusion

detection system that tracked the system activities through process list of open files, network traffic, symbol table

and system call traces to find any abnormal behavior. Kolbitsch et al. [2] performed an analysis of different malware

families by finding the correlation between them in terms of the System Call. A.lanziet al. [4] proposed the malware

detection system on the analysis of System Call invoked by the application, and achieved the detection rate of 89 %.

Authors considered various algorithms such as KNN, SVM, J48, Random Forest etc. Sato et al. [7] proposed the

method of calculating the malignancy score of the android application based on the information permission, Intent

filter (action), Intent filter (category), and Process for classification of android applications and have the accuracy of

91.4 %. Huang et al. [8] also used machine learning technique for classification of Android Application and have a

maximum accuracy of 81 % with J48. Canfora et al. [9] discussed about malware detection approach based on the

analysis of System Call and permission feature, and classified the malicious application.

Sapna Malik et al.[4], explored the behavior through system call hint of 345 malicious applications using machine

learning.In our work,we have used different supervised algorithms because of supervised dataset.K-Nearest

Neighbor (KNN) classifier is one of the Non –parametric machine learning algorithms that works on supervised

data. It utilizes a database in which the data points are separated into classes to predict the classification of a new

sample point.This strategy classify an unknown sample dependent on the class of the instance nearest to it in the

training space by estimating the separation between the training instances and the unknown sample. It is based on

similarity between data points which is measured using distance metric .For example,in the figure 2 below, KNN

algorithm starts by calculating the distance of point X(Application X) from all the points. As it will be checked on

similarity ofthe behavior of the system calls,it will check closely how the features of application resemble the

training set to classify it as malware or benign.Let‟s assume k=3 and find the 3 nearest pointswith least distance to

an application X(encircled in figure 2).It is classified by a majority vote of its neighbors, and gets assigned to the

class most common among its k nearest neighbors.If it matches with benign, then it is a genuine

application.Otherwise ,it is classified as malware application.

https://www.hindawi.com/journals/scn/2018/5749481/#B4
https://www.hindawi.com/journals/scn/2018/5749481/#B6

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 038 ISSN: 2319-1058

Fig. 2.Example of KNN algorithmfor classification

Decision Tree classifiers are another sort of AI classifiers that work on supervised data and are Non-parametric in

nature and are graphically represented as trees. Interior nodes indicate conditions with respect to the factors of a

problem, while last nodes or leaf speak about ultimate decision of the algorithm. The authors in [34] use API calls

and permissions as features to train SVMs and Decision Trees (DTs).One of the example is considered below in

figure 3 where an application which invokes a system call with higher frequency than normal behavior,it can be

denoted by leaf node as malware application.

Fig. 3.Example of Decision tree for classification

As shown through an example in fig 3,when frequency of System call is comparatively higher,Application can be a

malware.The same is illustrated in detail in figure 4 where X axis denotes different system calls invoked by malware

and Y-axis shows the frequency of those system calls.System calls like sendto() are used for sending data to the

socket are often utilized by malwares. Further, the process control related system call like ptrace() is used for

process tracing and controlling the other processes, getuid() for getting user id of the owner of the process, prctl() for

controlling execution of the process.All these system calls reflect the presence of malware.

https://www.hindawi.com/journals/scn/2018/5749481/#B5

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 039 ISSN: 2319-1058

Fig. 4.Example ofpresence of various system calls in Malware applications

Naïve bayes classifiers were our other choice and are characterized as probabilistic models for classification.They

have the significant capacity to decide the likelihood of an application being malware. The authors in [32] analyse

Bayesian-base machine learning techniques for Android malware detection.Naive Bayes model is easy to build and

particularly useful for very large data sets.

Fig. 5.Example of Naïve Bayes algorithm for classification

Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods. they

assume features are independent.It is illustrated in the figure 5,where an application is categorized as malware or

benign through behavior of system calls 1 and 2.Let us assume these system calls be read() and write() and are

interdependent on each other. In such cases, naïve bayes will be unable to classify because of the dependency

ofsystem calls on each other.As Naïve bayes takes conditional independence as assumption, It works well for

classification where two classes are involved ,like our case of malware and benign.

The authors in [23] gather features from application code and manifest (permissions, API calls, etc.) and use Support

Vector Machines (SVMs) to identify different types of malware families. SVM calculations separate the n-

dimensional space representation of the data into two locales utilizing a hyperplane. This hyperplane dependably

boosts the edge between those two locales or classes. The margin is characterized by the most distant separation

between the instances of the two classes and computed dependent on the distance between the nearest instances of

the two classes, which are called supporting vectors .Being a supervised algorithm,it has been utilized in our

research work as well.

Similar to other algorthims ,Random forest also helps in classifying the application as malware or benign by

utilizing the decision represented by majority of decision trees.Yerima et al. [17] tried different algorithms over API

calls and command sets and show promising results for ensemble methods, such as Random Forests (RFs).Let us

consider an example in fig 6,where different decision trees are made out of a sample dataset.The result of Tree1

,let‟s say it is Class 1 which denotes malware and the result of Tree 2 is class 2 i.e Benign Application & result of

Tree N is Class 1 again i.e malware.So,result of RF is indicated by majority voting and the output reflects the

presence of malware as shown below.

https://www.hindawi.com/journals/scn/2018/5749481/#B3
https://www.hindawi.com/journals/scn/2018/5749481/#B2
https://www.hindawi.com/journals/scn/2018/5749481/#B7

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 040 ISSN: 2319-1058

Fig. 6.Example of Random Forest for classification

III. DYNAMIC ANALYSIS

Dynamic Analysis,also known as behavioral analysis, includes studying and analyzing the applications at the time

of their execution . Generally, this procedure can include API calls, system calls, IP address ,network traffic,etc. As

network traffic and system calls are being frequently used for dynamic analysis. Monitoring network traffic of

mobile devices is one of the ways of detecting the malware ,as applications send and receive data through networks

and the same can be utilized for leaking data to attackers maliciously. Shabtai et al.[22] discussed a behavior based

anomaly detection system for detecting meaningful deviations in a mobile applications network behavior by

detecting mobile malware with self-updating capabilities. The detection of such can be performed based on

applications‟ network traffic patterns only. The other fundamental building block of dynamic investigation is system

calls. A system call is the component through which a user cooperates with the kernel in the OS to demand an

activity to be performed. Likewise in Android ,interaction is done by the user with OS through System calls. Many

Researchers have utilized system call features for malicious application detection.In their work, Schmidt et al.[36]

proposed intrusion detection system that tracked the system activities through process list of open files, network

traffic, symbol table and system call traces to find any abnormal behavior. Kolbitsch et al. [2] performed an analysis

of different malware families by finding the correlation between them in terms of the System Call.

The general system calls used by malicious and benign applications are OPEN(opening a file),CLOSE(closing a

file),GETID(related to app ID),etc.These system calls are common and are likely to be issued by all applications

irrespective of malware and benign applications. As there are more than 250 system calls which can be used by

applications, system calls utilized by our datasetare explained in Table 1 below.

Sno System call Description

1 Access Check user's permissions for a file

2 Brk
Change the location of the program break, which defines the end of the process's

data segment.

3 Chmod Change permissions of a file

4 Clock_gettime Retrieve the time of the specified clock.

5 Clone Create a child process

6 Getuid32 Returns the effective user ID of the calling process.

7 Read Read from the file descriptor

8 Getpid Get process id

9 Recvfrom Receive from the socket

10 Open Open the file for reading, writing or both.

11 Fchown32 Change the ownership of the file

12 Sendto Send to the socket

13 Ioctl Manipulate device parameters of special files

14 Umask Sets the calling process's file mode creation mask (umask) to mask & 0777

15 Uname Returns system information

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 041 ISSN: 2319-1058

16 Epoll_wait Wait for an I/O event on an epoll

17 Writev Write data into multiple buffers

18 Sched_yield Yield the processor

19 Nanosleep High resolution sleep

20 Sigprocmask Examine and change blocked signals

21 Munmap Deletes the mappings for the specified address range

22 Fsync Synchronize a file's in core state with storage

23 Pread64 Read from a file descriptor at a given offset

24 Stat64 Get file status

25 Close Close a file descriptor by the kernel

26 Dup Creates a copy of a file descriptor.

27 Epoll_ctl For a scalable I/O event notification mechanism

28 Fcntl64 Open file descriptor fd

29 Fdatasync Modified data of fd to be moved to a permanent storage device.

30 Flock Applies or removes an advisory lock on the file associated with the file descriptor fd

31 Fstat64
Get information from the file specified by filedes and stores it in the structure

pointed to by buf .

32 Ftruncate
Regular file named by path or referenced by fd to be truncated to a size of

precisely length bytes.

33 Futex Implement basic locking, or as a building block for higher-level locking

34 Getdents64 Reads several linux_dirent structures from the directory

35 Getlimit Get and set resource limits.

36 Getpriority Obtain the nice value of a process, process group, or user.

37 Getsockopt Manipulates options associated with a socket.

38 Gettid Gettid() returns the caller's thread ID (TID).

39 Gettimeofday Can get and set the time as well as a timezone.

40 Llseek Implements the lseek and llseek system calls.

41 lstat64 All of these system calls return a stat structure

42 Madvise Give advice about use of memory

43 Mkdir Attempts to create a directory named pathname

44 Mknod Creates a filesystem node

45 mmap2 Asks to map length bytes starting at offset offset

46 Mprotect Function shall change the access protections

47 Mremap Expands (or shrinks) an existing memory mapping

48 Msync Flushes changes made to the in-core copy

49 Prctl First argument describing what to do

50 Ptrace
Provides a means by which one process may observe and control the execution of

another process

51 Pwrite64 pwrite() became pwrite64() in kernel 2.6

52 Rename Change the name of the file or directory

53 Setpriority Scheduling priority of the process, process group, or user,

54 Statfs64
Statfs() and fstatfs() system calls were not designed with extremely large file sizes in

mind

55 Tgkill Sends the signal sig to the thread with the thread ID tid in the thread group tgid.

56 Unlink Utility to delete files

Table 1. System calls with their description

Application samples with higher frequency of specific system calls as compared to other applications denote the

presence of malware .Consider an example in figure 7,where x-axis denotes different application samples and y-axis

denotes frequency of a system call taken by those application samples.If maximum number of application samples

are invoking a particular system call with frequency ranging from 10-20,but if one of those applications invokes that

system call with a comparatively very high frequency of 100-120,it reflects deviation from the normal behavior

.Normal and abnormal behavior are further explained in figure 8 and 9 where normal deviation in frequency of

system calls denote normal behavior of application but excessive deviation of frequency of system call of any

https://linux.die.net/include/linux/prctl.h

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 042 ISSN: 2319-1058

application denotes abnormal behavior.As in figure 8 ,frequency of a system call is similar for S1,S2,S3,S4

applications which showcases normal behavior in comparison to figure 9,where there is lot of deviation in behavior

of sample S1 in contrast to S2,S3,S4.

Fig. 7. Behavior Analysis of Applications

Fig. 8.Example of Normal behaviorFig. 9.Example of Abnormal behavior

Formulation of dynamic analysis involves a series of steps.The different steps followed for the same are described as

follows:

1. Initializing the emulator and launching it with android (nexus 5).

2. The application is then installed on the emulator.

3. Strace command is then executed for hooking the system call on emulator for an interval of 2 to 5 minutes.

4. Frequency of all system calls utilized by the application during the execution gets collected.

5. Dataset is generated using the applications and frequency of their respective system

calls.Furthermore,Machine algorithms are applied and an application is tested for a malware.

Recently, researchers and other organizations prefer applying machine learning methods for malware analysis and

detection. AsMachine learning is an application of artificial intelligence (AI) that provides systems the ability to

automatically learn the data model and make predictions. It enhances the decision making capability leading to

conformity of an application being a malware or a benign application.

Our work has been illustrated in figure 10 below where different samples of malware and benign are collected and

run through Geny motion and their frequency of system calls are extracted,thus generating a dataset with class labels

of malware and benign.To test any application,test data is inputted into classification models and predictions are

made for malware or benign applications.

Fig. 10.Dynamic Analysis Process

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 043 ISSN: 2319-1058

IV. METHODOLOGY

Our work involves developing a robust environment with the help of an emulator named Genymotion (virtual

device) for running each application, to protect our own devices from getting affected by the malicious

application.Each application is executed to observe its behaviour. This involves system call log generation using

„strace‟ and further creating a robust dataset based on the same.As discussed , the system calls are the interface

between the user and the kernel. This means all requests from the applications will pass through the System Call

Interface before its execution through the hardware. So capturing and analyzing the system calls can help us in

malware detection.Let us consider an example in figure 11, where on x-axis,there are n application samples and their

frequency of invoking system calls on y-axis reflects the application behavior for benign or malware.

Fig. 11.System calls representing behavior of Applications

Though,System calls like OPEN(opening a file),CLOSE(closing a file),GETID(related to app ID),etc are common

and are likely to be issued by all applications irrespective of malware and benign applications. But,System calls like

sendto(), recvfrom() which are used for sending and receiving data from the socket are often utilized by malwares.

Further, the process control related system call like ptrace() is used for process tracing and controlling the other

processes, and the sigprocemask() is used for blocking signal to the process, wait4(), futex, getpid() for getting

process id, getuid() for getting user id of the owner of the process, prctl() for controlling execution of the process,

are also heavily used. Sapna et al.[4] also found that the malware also executes the system call related to writing and

reading data from the files stored on phone and SD memory like write(), read(), ioctl(), fcntl64(), stat64(), close(),

open(), mmap(), munmap(), lseek(), dup() etc.

To understand the behavior of an application, we have utilized machine learning algorithms which forms a crucial

part of Artificial Intelligence that generates new calculations to sum up behaviors utilizing data.The Machine

learning models learn and explore data, find relevant patterns in data and predicts similar patterns in new data.There

are different types of machine learning,but we have considered supervised learning in our work.As the dataset

utilized is supervised and have labels of malware and benign samples.So,we have utilized supervised machine

algorithms.In Supervised learning method, the historical data consists of expert knowledge in the form of inputs and

corresponding outputs with labels, and is used to train the models and based on the patterns identified, the model

performs classification.Classification is a technique to categorize our data into a desired and distinct number of

classes where we can assign label to each class.Classification with only 2 distinct classes or with 2 possible

outcomes is referred to as binary classification.In a binary classification problem, we are often given a training set

with labeled data {xi , yi} ntr i=1, where yi∈ {0, 1} and xi is a vector containing the values of “P” predictors or

features, namely, xi = (xi1, . . . , xiP). In our case, System callsfall under predictors.Machine learning algorithms are

responsiblefor constructing a function from the training set that separates the two classes. In our experiment,

popular classification techniques namely k-Nearest-Neighbors(kNN), Decision Trees(DT), Naive Bayes ,Support

Vector Machines (SVMs), and Random Forests (RF) were utilized to develop the predictive environment to classify

application into malwares based on frequency of system calls.These algorithms basically identify patterns in datasets

and classify data on the basis of these patterns as a powerful tool for classifying applications.

Figure 12 illustrates the steps utilized in data mining approach for our study where the main aim of this experiment

is to compare the results obtained from different algorithms to verify accuracy of algorithms in terms of malware

detection .We determined the malware on the basis of the frequency of system calls, when used on the top of

Sandbox environment and classification methods that result in good accuracy. The dataset consisted of malware and

benign samples of various formats. Here, we began with running every Android application in emulator

.Furthermore, recorded the frequency of system calls when the application is introduced in the emulator and applied

machine learning algorithms to learn the behavior of these applications and finally tested the applications for benign

and malware.

An

dr

oi

d

Ap

pli

cat

io

n

S

ys

te

m

ca

lls

E

m

ul

at

or

Fr

eq

ue

nc

y

of

sy

ste

m

cal

ls

Tr

ai

ni

n

g

S

et

T

e

st

in

g

S

et

Te

sti

n

g

M/

C

Alg

orit

hm

s M
a
l
w
a
r
e

B
e
n
i
g
n

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 044 ISSN: 2319-1058

Fig. 12.Steps Involved in Behavior Analysis

But this strategy alone is not sufficient for malware prediction and there is a need to understand whether similar

category based applications invoke similar system calls.As malware prediction can be done in a better way by

formulating the behavior of a certain category based application and testing an X application from that category to

classify it as malware or benign by comparing it with its general behavior of invoking system calls.Capturing and

analyzing the system call based on certain category of an application can give further information about the behavior

of a specific type of application,which is lateron considered in our experimentin detail.The results are illustrated in

section 5.

V. RESULTS AND IMPLEMENTATION

As noted in the introduction, several researchers have studied different permissions used by an application and

different strategies to detect malware. In order to evaluate the effects that system calls have on the behavior of

applications, we have used the well-known R open-source statistical software, along with a number of libraries for

machine learning models (randomForest, e101,and caret).Generation of dataset is a prerequisite to model

construction.In our work,the original dataset is built using 1000 applications each for benign and malware.Because,

if data mining is required as a tool to uncover patterns in data,then dataset should be large enough to contain these

patterns.

The system calls have been separated in the Dynamic examination stage from the applications and frequency of

system calls is recorded to detect the presence of malware with the help of machine learning algorithms. The

purpose of this work was to determine the malware on the basis of the frequency of system calls, when used on the

top of Sandbox environment and utilization of classification methods that result in the best prediction.

As mentioned before,to accomplish the entire process, we have utilized the Geny Motion Emulator. Here, we

execute every Android application in emulator .Furthermore, the system calls are recorded when the application is

introduced in the emulator. This procedure records the frequency of system call logs,thus helping in creation of

dataset as shown in figure 13.

Fig. 13. Flow of events for Dataset Creation

Well known classifiers under data mining like k-Nearest-Neighbors, Decision Trees, Support Vector Machines,

Naive Bayes and Random Forest were evaluated. These algorithms belong to a broad category of parametric and

non parametric classifiers and the purpose of both types of classifiers is to learn a function that maps input variables

to output variables from training dataset based on certain parameters.There were a total of 56 system calls taken as

parameters in our study.

Data mining offerdifferent metrices like true positive value, false positive value,accuracy, precision, recall, and F

measure to validate the performance of different classifiers on dataset.Accuracy is the ratio of correctly predicted

malwares to the total no. of samples.Higher accuracy implies that the classifier makes fewer wrong predictions or

misclassificationsthan correct predictions.For implication of the classification algorithm,dataset was divided into

Initalizing

emulator

Installing apk

on emulator

Executing

strace

System

Call Logs

Creation

of data set

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 045 ISSN: 2319-1058

training set(80%) and a test set(20%) respectively.The models were evaluated on test data and performance was

recorded using the above metrices.Since the approach of each algorithm is different,evaluation of all these

algorithms is important to find out which one is better.We can clearly justify the quality of the dataset since all the

algorithms are able to identify a considerable number of instances.The overall misclassification by each classifier is

very low,indicating that classifiers performed really well. The results show that algorithms achieve similar results,

but performance was slightly better in the case ofk nearest neighbor (kNN),Decision Tree(DT) and Random Forest

(RF).

As KNN classifier operates differently and does not learn anything from data rather finds a group of k objects in the

training set that is closest to the test object.It does not rely on the knowledge of domain.It simply calculates distance

between two features in order to make classification decisions.Random forest also performed extremely well with an

accuracy of 1 and correctly predicted the actual class due to majority of decisions taken into consideration utilizing

different decision trees.

Table 2 presents the performance evaluation of different classifiers used in this study.It helped us indetermining

which algorithm is more applicable for the Android malware detection. The experimental results for a dataset of real

malware and benign apps indicate good average accuracy rate using Naïve Bayes,KNN,RF,SVM and Decision Tree,

respectively.Dynamic analysis results find no significant difference in the detection accuracy of algorithms except

naïve bayes algorithm gives more false positives (benign apps flagged as malware) as a tradeoff for flagging

malware more comprehensively.Besides,parametric nature of this classifier,it is also prone to prediction errors such

as bias. Overall, when the frequency of system calls are considered as features, there is minimal difference in the

detection performance of other algorithms with respect to accuracy and true positive rate as shown in Table 2.In

conclusion, analyzingfrequency of system calls offer a moderate approach to detect Android malware.

Metrices Naive Bayes KNN Random Forest SVM Decision tree

Accuracy 0.91 1.0 1.00 0.99 1.00

Precision(p) 0.90 1.0 1.00 1.00 1.00

Recall(r) 0.91 1.0 1.00 0.97 1.00

F measure 2.7 3.0 3.00 3.00 3.00

Table 2.Performance of Different Algorithms

The main goal was to develop the proof of concept for the machine learning based malware classification. This was

utilized for the extraction of the behavior of the samples, which was used as an input to the machine learning

algorithms. The accuracy was measured for the case of detection of whether the file is malicious and the decision of

which method performs better was made.

As the top system calls used by malicious and benign applications are OPEN(opening a file),CLOSE(closing a

file),GETID(related to app ID),etc.These system calls are common and are likely to be issued by all applications

irrespective of malware and benign applications.But our work found out (as illustrated in Figure 14) that high

frequency of system calls such as Getuid,read,sendto,getpid,recvfrom reflected the presence of malware .

Fig. 14. System calls utilized heavily by malware samples

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 046 ISSN: 2319-1058

5.1 Category based analysis of Applications

Our analysis reveals the similarities and differences between benign and malware system calls invoked by

applications of certain category and shows how frequency of these system calls helps us in analyzing the behavior of

malicious activity during run time.Thus, making malware detection more effective and easier.

As Malicious applications usually makes use of different permissions to launch malicious activities.Same is the case

with system calls. As there are hundreds of system calls in Android system ,different applications can have different

requirements of system calls .To prove this fact,an experiment was done and 25 samples of benign and malware

each for Banking and Gaming applications which belong to two different categories were

collected.Ourworkthenincluded comparing the system calls of benign Application of Category 1(Banking

Applications) with benign application of Category 2(Game Applications) .The system calls invoked by most of the

benign Banking applications includedaccess,clone,dup,ioctl,recvfrom,sches_getparan,writev,getid ,unmask,etcand

system calls invoked by benign Gaming application included access, brk, clock gettime, close, futex, fchown32,

getid, getrlimit, llseek, mkdir, munmap, prctl, read,sched_yield,pread64 ,write,etc.As shown in fig15-16,few of the

system calls were similar in both the cases of Gaming and Banking application like access,clone,dup,open writev etc

which are being utilized generally to check users‟ permissions for a file,to create child process,to create copy of file

descriptor,to open the file for reading/writing and to write data into multiple buffers.But there were system calls

which were being taken by gaming application samples and not by banking application samples.For eg: system calls

like fchown32,futex,pread64,makedir,getrlimit and llseek were taken by gaming applications but not often by

banking applications as it involves changing ownership of file,basic locking,getting and setting source limits

etc.Thus ,different categories of applications can vary in terms of their demands of system calls.

Fig. 15. System calls invoked by Benign Bank applications

Fig. 16.System calls invoked by Benign Game applications

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 047 ISSN: 2319-1058

Fig. 17. System calls invoked by Malware Bank applications

Fig. 18. System calls invoked by MalwareGame applications

Figure 16 and 17 clearly showcases that there is high frequency of certain system calls like

sendto(),recvfrom(),read(),write() incase of malware applications for each category as shown on x-axis in

comparison to frequency of same system calls under genuine applications in figure 15-16.So,it hereby confirms

thatsystem calls like sendto(),recvfrom(),read(),write() had higher frequencies in both the cases of malware

applications as stated in the above sectionalso. Thus, this intuitive methodology ofCategory based analysis can help

in efficient android malware detection by helping us in analyzing the behavior of malicious activity during run

time.Thus, making malware detection more effective and easier.

VI. CONCLUSION & FUTURE SCOPE

The steadily expanding malware dangers have constrained the Android anti-malware industry to build up the

answers for alleviating malignant application risk on Android cell phones and other Android gadgets. Fundamental

methodologies identified for this reason and discussed in this paper are: Static approach and Dynamic approach.

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 048 ISSN: 2319-1058

Static approach could not detect the unknown malwares so, we have defined an approach using system calls under

dynamic analysis data set was created on the basis of frequency of system calls and different algorithms were

applied and performance was calculated using machine learning algorithm. Well known data mining classification

techniques like Naive Bayes, RandomForest,Decision Tree,SVM and KNN were considered. The results are

analysed and accuracy is calculated.Based on the results,it was concluded that random forest,KNN and Decision tree

proved to be the best classifiers because they achieved statistically valid results. The main features of our algorithm

include: Firstly, usage of system call logs i.e. working at the kernel level to find the malicious behaviour of the

applications. Secondly, dataset is generated and machine learning algorithms are applied.The correctness andquality

of the dataset is justified with the high accuracy results we obtained.

This study confirms the potential of data mining techniques in prediction of malwares .Moreover ,it confirms

category based analysis of applications can further help in better prediction of malwares if there exists any deviation

from the expected behavior of that category.

Our future work will include extending our methodology tohybrid malware analysis in Android and comparison of

the results with our findings in this research.

VII. REFERENCES
[1] N.Varol, A.F.aydogan and A.Varol, “Cyber attacks Targetting Android Cell-phones,” IEEE,2017

[2] Leesha Aneja and Sakshi Babbar,”Research Trends in Malware Detection on Android Devices”,springer,2017

[3] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell, “Androdialysis: Analysis of android intent effectiveness in malware

detection,” Computers & Security, vol. 65, pp. 121–134, 2017, http://www.sciencedirect.com/science/article/pii/S016740481630160. View

at Publisher · View at Google Scholar

[4] Sapna Malik, Kiran Khatter ,”System call analysis of Android Malware families”,Indian Journal of Science and Technology(IJST),vol
9(21),June 2016.

[5] Saksham Rana , Leesha Aneja, ”Static and Dynamic Analysis of Android Malware ,”International Conference,REDSET 2016.
[6] Aashima Malhotra ,Karan Bajaj ,”A survey on various malware detection techniques on Mobile Platform ,International Journal of

Computer Applications (0975-8887),Volume 139-No.5,April 2016.

[7] Balaji Baskaran and Anca Ralescu, “A Study of Android Malware Detection Techniques and Machine Learning” ,MAICS-2016.
[8] D.Kapratwar,Ankita,”Static and Dynamic Analysis for Android Malware Detection”,San Jose State University,2016.

[9] Fei Tong,Zheng Yan, “A hybrid approach of mobile malware detectionin android,”J.ParallelDistrib.Comput.(2016).

[10] Nihar Ranjan Roy, Anshul Kanchan Khanna & Leesha Aneja,” Android Phone Forensic: Tools and Techniques”, IEEE
conference,GalgotiasUniversity,Greater Noida,2016.

[11] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh &Ainuddin Wahid AbdulWahab,” A review on feature selection in mobile malware

detection, “Digital Investigation, Elsevier,2015.
[12] Babu Rajesh V, Phaninder Reddy, Himanshu P & Mahesh U Patil,” Androinspector:A system for comprehensive analysis of Android

Applications,”Inter-national Journal of Network security and its Applications(IJNSA), vol. 7,No.5,September 2015.

[13] Dr. S.Vijayarani1 and Ms. Maria Sylviaa ,”Intrusion Detection System – aStudy”, international journal of security, Privacy and Trust
Management (IJSPTM) Vol 4, No 1, February 2015.Martina Lindorfer, Matthias Neugschwandtner & Christian Platzer,

[14] “MARVIN:Efficient and comprehensive Mobile App Classification Through Static and Dynamic analysis,” IEEE 39th Annual International

Computers,software and applications conference,2015.
[15] Pallavi Kaushik, Amit Jain “Malware Detection Techniques in Android” ,International Journal of Computer Applications (0975 – 8887)

,volume 122 – No.17, July 2015.

[16] P.Mahesh,A.Jayawant,G.Kale ,”Smartphone Security :Review of Attacks,De-tection and Prevention”,International Journal of Advanced
Research in Com-puter Science and Software Engineering,Volume 5,Issue 3,2015.

[17] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android malware detection using ensemble learning,” IET Information Security, vol.

9, no. 6, pp. 313–320, 2015. View at Publisher · View at Google Scholar · View at Scopus.
[18] Shina Sheen,R.Anitha & V.Natarajan,”Android based malware detection using a multifeature collaborative decision fusion

approach,”Neurocomputing,Else-vier,2015.

[19] Sapna Malik,Kiran Khatter “AndroData:A tool for static and dynamic feature extraction of Android App”,The International Journal of
Applied Engineering Research, Scopus Indexed,2015.

[20] Walnycky, I. Baggili, A. Marrington and J. Moore, "Network and device forensic analysis of Android social-messaging applications"

,Digital Investigation, Elsevier,vol. 14, pp. S77-S84, 2015.
[21] "The volatility framework: volatile memory artifact," Systems., Volatile, [Online]. Available http://secxplrd.blogspot.in/2011/10/volatility-

framework-volatile-memory.html. [Accessed 9 .11. 2015].

[22] A.Shabtai, L.Tenenboim-chekina ,D.Mimran, L.Rokach, B.Shapira & Y. Elo-vici,”Mobile Malware detection through analysis of
deviations in Application Network Behaviour,”Digital Investigation , Elsevier,2014.

[23] Arp D, Spreitzenbarth M, Hubner M, Gascon H & Rieck K,”Drebin: effective and explainable detection of android malware in your

pocket,” in Network and Distributed System Security (NDSS) Symposium; 2014.
[24] D. Quick and K.-K. R. Choo, "Impacts of increasing volume of digital forensic data: A survey and future research challenges," Digital

Investigation, vol. 11, pp. 273-294, 2014.

[25] Hussain Ahmad Madni Uppal, Memoona Javed and M.J. Arshad“An Overview of Intrusion Detection System (IDS) along with its
Commonly Used Techniques and Classifications”, International Journal of Computer Science and Telecommunications ,Volume 5, Issue 2,

February 2014.

[26] R. Ayers, S. Brothers and W. Jansen, "Guidelines on Mobile Device Forensics,"NISTSpecialPublication800-
[Online]http://dx.doi.org/10.6028/NIST.SP.800-101r1, May 2014.

[27] R.Dhaya and M.Poongodi ,“Detecting software vulnerabilities in android using Static Analysis” ,IEEE,2014.

http://www.sciencedirect.com/science/article/pii/S016740481630160
https://doi.org/10.1016%2fj.cose.2016.11.007
https://doi.org/10.1016%2fj.cose.2016.11.007
https://doi.org/10.1016%2fj.cose.2016.11.007
http://scholar.google.com/scholar_lookup?title=Androdialysis%3a+Analysis+of+android+intent+effectiveness+in+malware+detection&author=A.+Feizollah&author=N.+B.+Anuar&author=R.+Salleh&author=G.+Suarez-Tangil&author=S.+Furnell&publication_year=2017
https://doi.org/10.1049%2fiet-ifs.2014.0099
http://scholar.google.com/scholar_lookup?title=High+accuracy+android+malware+detection+using+ensemble+learning&author=S.+Y.+Yerima&author=S.+Sezer&author=I.+Muttik&publication_year=2015
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-84944075766&partnerID=K84CvKBR&rel=3.0.0&md5=1ff4dd9eec52c1a0865f5a3e51a2beb8

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.133.07

Volume 13 Issue 3 June 2019 049 ISSN: 2319-1058

[28] R.Raveendranath,V.Rajamani,A.J.Babu and S.K.Datta,”Android Malware At-tacks and Countermeasures:Current and Future

Directions”IEEE,2014.
[29] Lovi Dua and Divya Bansal,”Review on mobile threats and detection techniques,” International Journal of Distributed and Paral-lel Systems

(IJDPS),

[30] M. Kaart and S. Laraghy, "Android forensics: Interpretation of timestamps," Digital Investigation, vol. 11, p. 234–248, 2014.

[31] S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of bayesian classification-based approaches for android malware detection,” IET

Information Security, vol. 8, no. 1, pp. 25–36, 2014. View at Publisher

[32] Nilotpal Chakraborty,”Intrusion Detection System And Intrusion Prevention System: A Comparative Study“International Journal of
Computing and Busi-ness Research (IJCBR),Volume 4 ,Issue 2, May 2013.

[33] N. Peiravian and X. Zhu, “Machine learning for Android malware detection using permission and API calls,” in Proceedings of the 25th

IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2013, pp. 300–305, USA, November 2013. View at Scopus
[34] Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas P & lvarez G.,” PUMA:permission usage to detect malware in android,” Advances

in intelligent sys-tems and computing, Vol. 189. Berlin Heidelberg: Springer; p. 289e98,2013.

[35] Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P et al. ,”Vetting undesirable behaviors in android apps with permission use analysis,”in

ACM SIGSAC conference on Computer & communications security,p. 611e22,2013.

[36] John Demme, Matthew Maycock, Jared Schmitz & Adrian Tang ,”On the Feasibility of Online Malware Detection with Performance

Counters ,“ISCA ‟13 .Kuo-Ping Wu, “DroidMat: Android Malware Detection through Manifest andAPI Calls Tracing,” Information
Security (Asia JCIS), pp No.: 62 – 69,2012.

[37] J. Sahs and L. Khan, “A machine learning approach to android malware detection,” in Proceedings of the 2012 European Intelligence and

Security Informatics Conference, EISIC '12, pp. 141–147, August 2012.
[38] Kavesh Shaerpour,Ali Dehghantanha & Ramlan Mahmod,”Trends in Android Malware Detection Journal of Digital Forensics,” Security

and law,vol.8(3).

[39] E. Casey,” Digital Evidence and Computer Crime” in Forensic Science, Computers, and the Internet, Academic Press, ELSEVIER, 2011

[40] J. Oh, S. Lee and S. Le, "Advanced evidence collection and Analysis of webBrowseractivity," Digital Investigation

http://dx.doi.org/10.1016/j.diin.2011.05.008., vol. 8, no. SSN 1742-2876, pp. S62-S70, August 2011.

[41] V. L. Thing, K.-Y. Ng and E.-C. Chang, "Live memory forensics of mobile phones," Digital Investigation, Vols. Volume 7, Supplement,
no. ISSN 1742-2876,http://dx.doi.org/10.1016/j.diin.2010.05.010., pp. S74-S82, August 2010.

[42] William Enck.,Machigar Ongtang,and Patrick Drew ,”Understanding Android Security”,IEEE Security and Privacy,7(1):50-57,2009.
[43] R. P. Mislan and T. Wedge, "Designing Laboratories for Small Scale Digital Device Forensics," in ADFSL Conference on Digital

Forensics, Security and Law, 2008.

[44] L.Aron and P.Hanacek ,”Overview of Security on Mobile Devices,” IEEE,2015
[45] Y.Zhou and X.Jiang,”Dissecting Android Malware:Characterization and Evo-lution”IEEE Symposium on Security and Privacy ,2012.

https://doi.org/10.1049%2fiet-ifs.2013.0095
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-84897734703&partnerID=K84CvKBR&rel=3.0.0&md5=03dea9ebe6dd273632d65cc557a2e455
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kuo-Ping%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6298136&matchBoolean=true&queryText=%22Index%20Terms%22:.QT.static%20analyst%20paradigm.QT.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6298136&matchBoolean=true&queryText=%22Index%20Terms%22:.QT.static%20analyst%20paradigm.QT.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6298136&matchBoolean=true&queryText=%22Index%20Terms%22:.QT.static%20analyst%20paradigm.QT.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6296578
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6296578
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6296578

