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Abstract- This paper is focused on Android malware detection using system calls under dynamic analysis. Basically, the 

two main analysis techniques utilized for Android Malware detection are:Static Analysis and Dynamic Analysis. Static 

analysis ,which is used for Android malware detection makes use of signatures to detect malicious applications. The 

features are extracted from the application without executing it. It can accurately detect malware by extracting signatures 

from test data and then comparing the test data with the signature samples of virus and benign samples. But, this 

examination experiences code obfuscation procedures which the Malware creators utilize to sidestep from static discovery 

strategies. Therefore, it is important to focus on dynamic analysis where code of an application is analyzed at the time of 

it’s execution. System calls have been heavily utilized to detect malicious behavior of applications under dynamic 

Analysis.As,Current state-of-the-art research shows that recently, researchers and other organizations prefer applying 

machine learning methods for malware analysis and detection .Hence, this work is focused on observing the system call 

logs, constructing the robust dataset utilizing the same and classifying application as benign or malware with the help of 

machine learning models.Moreover,it involves validating the performance of these models using different evaluation 

metrices and identifying the best predictive model.An experimentation is further done based on intuitive realization to 

eventually confirm that an application from a certain category demands similar system calls utilized by other applications 

in that category.Our analysis reveals the similarities and differences between benign and malware system calls invoked by 

applications of certain category and shows how frequenciesof these system calls help us in analyzing the behavior of 

malicious activity during run time. 
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I. INTRODUCTION 

Mobile phones have become the necessity of modern human lives to store our valuable information such as 

passwords, reminders, messages, photos, videos and social contacts. The advent in mobile technology has made 

human life easier and more efficient. However, at the same time, our excessive dependency on mobile devices has 

drawn attention of malware authors and cyber criminals leading to large number of cyber-attacks. Nowadays, with 

the digitization of trivial daily-life tasks ,people have become highly dependent on the mobile phones. Major players 

in the mobile market are - Apple's iOS and Google's Android that brings new security techniques with a host of 

additional features. iOS malware rate in comparison to Android Malware is not too acute. Amongst all, the major 

concern of security threat is on Android smartphones. The key reason for it is that it is open source and allow to 

download applications from unsafe sites. So, it is important to develop robust and efficient Android Malware 

detection system in order to protect our sensitive data from cyber-attacks on Android platform[1].  

As Android has become the prime target for cybercrimes by means of malware and viruses.Approximately 85.1% 

market share of android system gives us the view of its comparatively higher user base. The key reason for this is ,it 

does not restrict its users to install the applications from unsafe sites apart from the official store. Irrespective of the 

updates over the past few years, security remains the ultimate battleground in the field of Android mobile 

phones.There is a constant increase innew android malware samples every passing year as shown in figure 1. 

Securing Android mobile devices from malicious applications, have become an active area of research from the past 

few years. 

 

 
Fig. 1. Android Malware Rate[2] 
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Lot of  Emphasis has been given on Android Malware detection.There have been different approaches for the same 

which are broadly categorized into Static and Dynamic.Static analysis , makes use of signatures to detect malicious 

applications. The features are extracted from the application without executing it. It can accurately detect malware 

by extracting signatures from test data and then comparing the testdata with the signature samples of virus and 

benign samples.Itis an approach that includes analyzing the code of an application without executing it.Android 

applications are stored in .apk file. This .apk file is a zip heap of AndroidManifest.xml, classes.dex and different 

other files. Reverse Engineering is utilized for feature extraction. This is done using different tools like apktool.The 

AndroidManifest.xml document contains a great deal of permissions that are used for static examination.This 

philosophy is asset and time productive as the application is not executed. As mentioned,these most routinely used 

static components are the Permissions. Since these are isolated from the application AndroidManifest.xml and effect 

the malware area rate to a high degree, extensive research has been made with these as components furthermore 

combined with various components expelled from meta-data open in Google Play-Store, for instance, version name, 

version no., author's name, last updated time, etc.DREBIN [23] presents a wide static investigation and utilizes 

features from the Manifest file including intent filters using Support Vector Machine(SVM) as a machine learning 

algorithm. The consequences of the examination appeared that DREBIN distinguished 94% of  malware with low 

false alarm.But, this examination experiences code confusion procedures ,the Malware  creators utilize to sidestep 

from static discovery strategies. One of extremely mainstream avoidance procedure is the Update Attack: an 

application is introduced on the cell phone and when the application gets an upgrade, the malignant substance is 

downloaded andintroduced as a component. This cannot be identified by static investigation strategies which will 

filter just the considerate application. Thus, dynamic analysis came as a solution for this problem. 

Dynamic Analysis,which is also referred to as behavioral analysis, is utilized to study and analyse the  runtime 

behavior of applications . As a rule, this procedure checks for API calls, framework calls, system calls, IP address 

,network traffic and so forth.  This strategy is valuable when the source code of an application is obfuscated.The 

main fundamental building block of dynamic investigation  is system calls.In computing,a system call is the 

programmatic way in which a computer program request a service from the kernel of the Operating System.As 

android uses Linux 2.6 kernel, applications make use of services of kernel with the help of system calls. For 

instance, whenever a user wants to make a call through dialer application, telephony manager in application 

framework receives the request. The user call is then converted in library call by Dalvik Virtual Machine( DVM), 

that finally results in various system calls to kernel. Thus, request from all applications is passed through system call 

interface before the execution. There are more than 250 types of system calls utilized by Android OS for functions 

like allocating memory, accessing files etc. Capturing these calls give the detailed behavior of the application. 

Furthermore, frequency of occurrence  of system calls is considered/ taken as the proper metrics for defining 

application‟s behavior.It has been heavily utilized to detect malicious behavior of applications under dynamic 

Analysis.  

Our approach is mainly based on system call log generation. In our study, the system call log information of various 

benign and malware application  is collected with the help of an environment like Genymotion for extraction of 

system calls and creation of  robust dataset.Then after,with the help of machine learning algorithms ,we have 

classified applications as malware or benign.AsMachine learning is an application of artificial intelligence (AI) that 

provides systems the ability to automatically learn the data model and make predictions. The purpose of this work 

was to determine the malware on the basis of the behavior of system calls by using classification methods that result 

in good accuracy and identification of the best predictive model for this study.But this strategy alone is not effective 

for prediction.So, there was a need to understand whether similar category based applications invoke similar system 

calls.If that is the case,then malware prediction can be done in a better way by formulating the behavior of a certain 

category based application and testing an X application from that category to classify it as malware or benign by 

comparing it with its general behavior of invoking system calls.So,an attempt was made to explore the possibility 

based on intuitive realization to eventually confirm that an application from a certain category demands similar 

system calls utilized by other applications in that category,which can further help in better prediction of an 

application as a malware if there exists any deviation from the expected behavior. 

 

1.1 Contributions Of The Paper 

The main contributions of the paper are highlighted as follows: 

 

1. Toutilize an environment like Genymotion to extract system calls and create robust dataset. 

2. Toextract the key system calls that govern the behavior of malware and benign applications using machine 

learning. 
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3. To integrate machine learning models with domain of Android and to validate the performance of these 

models to predict malware attacks. 

4. To perform deep analysis of utilization of system calls by benign and malicious applications. 

5. To analyze the key patterns of various system calls by dividing the applications in categories. 

The further organization of the paper proceeds as follows.Section 2 provides literature review. Section 3 describes 

the Dynamic Analysis and the need of Machine learning to capture Malwares.Section 4 illustrates the methodology. 

Section 5 showcases results and discussions.  

 

II. RELATED WORK 

The capability to early distinguish malware applications is essential to ensure user's security.Android apps can be 

tagged, reported, and removed from the market and their signatures can be black-listed.  This can be viewed as a 

classification problem and, accordingly, many authors have utilized machine learning  over different features of 

Android application. In [37], the authors use permissions and control flow graphs along with Support Vector 

Machines (SVMs) to differentiate malware from good applications (“goodware” in what follows). Androdialysis [3] 

explores the intents of each application as features for the classification task. 

As discussed,our aim is  to classify the unknown sample as benign or malicious based on the behavior of their 

system calls using machine learning.In computing,a system call is the programmatic way in which a computer 

program request a service from the kernel of the Operating System.A system call is a way for the applications to 

interact with OS.It has been heavily utilized to detect malicious behavior of applications under dynamic Analysis. 

There has been a lot of research in the field of Malware Detection. In [7], a novel dynamic analysis method named 

Component Traversal is proposed that can automatically execute the code routines of each given Android 

application (app) as completely as possible. Taindroid is another dynamic examination framework which catches the 

system information for breaking down applications. In another examination by the creators of Maline have proposed 

a malware recognition instrument, in view of following frame-work calls and order them in view of machine 

learning calculations.Shabtai et al. discussed a behavior based anomaly detection system for detecting meaningful 

deviations in a mobile applications network behavior by detecting mobile malware with self-updating capabilities. 

The detection of such can be performed based on applications‟ network traffic patterns only.Many Researchers have 

utilized system call features for malicious application detection .In their work Schmidt et al.[22] proposed intrusion 

detection system that tracked the system activities through process list of open files, network traffic, symbol table 

and system call traces to find any abnormal behavior. Kolbitsch et al. [2] performed an analysis of different malware 

families by finding the correlation between them in terms of the System Call. A.lanziet al. [4] proposed the malware 

detection system on the analysis of System Call invoked by the application, and achieved the detection rate of 89 %. 

Authors considered various algorithms such as KNN, SVM, J48, Random Forest etc. Sato et al. [7] proposed the 

method of calculating the malignancy score of the android application based on the information permission, Intent 

filter (action), Intent filter (category), and Process for classification of android applications and have the accuracy of 

91.4 %. Huang et al. [8] also used machine learning technique for classification of Android Application and have a 

maximum accuracy of 81 % with J48. Canfora et al. [9] discussed about malware detection approach based on the 

analysis of System Call and permission feature, and classified the malicious application.  

Sapna Malik et al.[4], explored the behavior through system call hint of 345 malicious applications using machine 

learning.In our work,we have used different supervised algorithms because of supervised dataset.K-Nearest 

Neighbor (KNN) classifier is one of the Non –parametric machine learning algorithms that works on supervised 

data. It utilizes a database in which the data points are separated into classes to predict the classification of a new 

sample point.This strategy classify an unknown sample dependent on the class of the instance nearest to it in the 

training space by estimating the separation between the training instances and the unknown sample. It is based on 

similarity between data points which is measured using distance metric .For example,in the figure 2 below, KNN 

algorithm starts by calculating the distance of point X(Application X) from all the points. As it will be checked on 

similarity ofthe behavior of the system calls,it will check closely how the features of application resemble the 

training set to classify it as malware or benign.Let‟s assume k=3 and find the 3 nearest pointswith least distance to 

an application X(encircled in figure 2).It is classified by a majority vote of its neighbors, and gets assigned to the 

class most common among its k nearest neighbors.If it matches with benign, then it is a genuine 

application.Otherwise ,it is classified as malware application. 

 

https://www.hindawi.com/journals/scn/2018/5749481/#B4
https://www.hindawi.com/journals/scn/2018/5749481/#B6
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Fig. 2.Example of KNN algorithmfor classification 

 

Decision Tree classifiers are another sort of AI classifiers that work on supervised data and are Non-parametric in 

nature and are graphically represented as trees. Interior nodes indicate conditions with respect to the factors of a 

problem, while last nodes or leaf speak about ultimate decision of the algorithm. The authors in [34] use API calls 

and permissions as features to train SVMs and Decision Trees (DTs).One of the example is considered below in 

figure 3 where an application which invokes a system call with higher frequency than normal behavior,it can be 

denoted by leaf node as malware application. 

 

 
Fig. 3.Example of Decision tree for classification 

 

As shown through an example in fig 3,when frequency of System call is comparatively higher,Application can be a 

malware.The same is illustrated in detail in figure 4 where X axis denotes different system calls invoked by malware 

and Y-axis shows the frequency of those system calls.System calls like sendto() are used for sending data to the 

socket are often utilized by malwares. Further, the process control related system call like ptrace() is used for 

process tracing and controlling the other processes, getuid() for getting user id of the owner of the process, prctl() for 

controlling execution of the process.All these system calls reflect the presence of malware. 

 

https://www.hindawi.com/journals/scn/2018/5749481/#B5
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Fig. 4.Example ofpresence of various system calls in Malware applications 

 

Naïve bayes classifiers were our other choice and are characterized as probabilistic models for classification.They 

have the significant capacity to decide the likelihood of an application being malware. The authors in [32] analyse 

Bayesian-base machine learning techniques for Android malware detection.Naive Bayes model is easy to build and 

particularly useful for very large data sets. 

 

 
Fig. 5.Example of Naïve Bayes algorithm for classification 

 

Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods. they 

assume features are independent.It is illustrated in the figure 5,where an application is categorized as malware or 

benign through behavior of system calls 1 and 2.Let us assume these system calls be read() and write() and are 

interdependent on each other. In such cases, naïve bayes will be unable to classify because of the dependency 

ofsystem calls on each other.As Naïve bayes takes conditional independence as assumption, It works well for 

classification where two classes are involved ,like our case of malware and benign. 

The authors in [23] gather features from application code and manifest (permissions, API calls, etc.) and use Support 

Vector Machines (SVMs) to identify different types of malware families.  SVM calculations separate the n-

dimensional space representation of the   data into two locales utilizing a hyperplane. This hyperplane dependably 

boosts the edge between those two locales or classes. The margin is characterized by the most distant separation 

between the instances of the two classes and computed dependent on the distance between the nearest instances of 

the two classes, which are called supporting vectors .Being a supervised algorithm,it has been utilized in our 

research work as well. 

Similar to other algorthims ,Random forest also helps in  classifying the application as malware or benign by 

utilizing the decision represented by majority of decision trees.Yerima et al. [17] tried different algorithms over API 

calls and command sets and show promising results for ensemble methods, such as Random Forests (RFs).Let us 

consider an example in fig 6,where different decision trees are made out of a sample dataset.The result of Tree1 

,let‟s say it is Class 1 which denotes malware and the result of Tree 2 is class 2 i.e Benign Application & result of 

Tree N is Class 1 again i.e malware.So,result of RF is indicated by majority voting and the output reflects the 

presence of malware as shown below. 

 

https://www.hindawi.com/journals/scn/2018/5749481/#B3
https://www.hindawi.com/journals/scn/2018/5749481/#B2
https://www.hindawi.com/journals/scn/2018/5749481/#B7
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Fig. 6.Example of Random Forest for classification 

 

III. DYNAMIC ANALYSIS 

Dynamic Analysis,also known as behavioral analysis, includes studying and analyzing the  applications at the time 

of their execution . Generally, this procedure can include API calls, system calls, IP address ,network traffic,etc. As 

network traffic and system calls are being frequently used for dynamic analysis. Monitoring network traffic of 

mobile devices is one of the ways of detecting the malware ,as applications send and receive data through networks 

and the same can be utilized for leaking data to attackers maliciously. Shabtai et al.[22] discussed a behavior based 

anomaly detection system for detecting meaningful deviations in a mobile applications network behavior by 

detecting mobile malware with self-updating capabilities. The detection of such can be performed based on 

applications‟ network traffic patterns only. The other fundamental building block of dynamic investigation is system 

calls. A system call is the component through which a user cooperates with the kernel in the OS to demand an 

activity to be performed. Likewise in Android ,interaction is done by the user with OS through System calls. Many 

Researchers have utilized system call features for malicious application detection.In their work, Schmidt et al.[36] 

proposed intrusion detection system that tracked the system activities through process list of open files, network 

traffic, symbol table and system call traces to find any abnormal behavior. Kolbitsch et al. [2] performed an analysis 

of different malware families by finding the correlation between them in terms of the System Call.  

The general system calls used by malicious and benign applications are OPEN(opening a file),CLOSE(closing a 

file),GETID(related to app ID),etc.These system calls are common and are likely to be issued by all applications 

irrespective of malware and benign applications. As there are more than 250 system calls which can be used by 

applications, system calls utilized by our datasetare explained in Table 1 below. 

 

Sno System call Description 

1 Access Check user's permissions for a file 

2 Brk 
Change the location of the program break, which defines the end of the process's 

data segment. 

3 Chmod Change permissions of a file 

4 Clock_gettime Retrieve the time of the specified clock. 

5 Clone Create a child process 

6 Getuid32 Returns the effective user ID of the calling process. 

7 Read Read from the file descriptor 

8 Getpid Get process id 

9 Recvfrom Receive from the socket 

10 Open Open the file for reading, writing or both. 

11 Fchown32 Change the ownership of the file 

12 Sendto Send to the socket 

13 Ioctl Manipulate device parameters of special files 

14 Umask Sets the calling process's file mode creation  mask (umask) to mask & 0777 

15 Uname Returns system information 



International Journal of Innovations in Engineering and Technology (IJIET)  

http://dx.doi.org/10.21172/ijiet.133.07 

Volume 13 Issue 3 June 2019 041 ISSN: 2319-1058 

16 Epoll_wait Wait for an I/O event on an epoll 

17 Writev Write data into multiple buffers 

18 Sched_yield Yield the processor 

19 Nanosleep High resolution sleep 

20 Sigprocmask Examine and change blocked signals 

21 Munmap Deletes the mappings for the specified address range 

22 Fsync Synchronize   a   file's   in core   state   with storage 

23 Pread64 Read from a file descriptor at a given offset 

24 Stat64 Get file status 

25 Close Close a file descriptor by the kernel 

26 Dup Creates a copy of a file descriptor. 

27 Epoll_ctl For a scalable I/O event notification mechanism 

28 Fcntl64 Open file descriptor fd 

29 Fdatasync Modified data of fd to be moved to a permanent storage device. 

30 Flock Applies or removes an advisory lock on the file associated with the file descriptor fd 

31 Fstat64 
Get information from the file specified by filedes and stores it in the structure 

pointed to by buf . 

32 Ftruncate 
Regular file named by path or referenced by fd to be truncated to a size of 

precisely length bytes. 

33 Futex Implement basic locking, or as a building block for higher-level locking 

34 Getdents64 Reads several linux_dirent structures from the directory 

35 Getlimit Get and set resource limits. 

36 Getpriority Obtain the nice value of a process, process group, or user. 

37 Getsockopt Manipulates options associated with a socket. 

38 Gettid Gettid() returns the caller's thread ID (TID). 

39 Gettimeofday Can get and set the time as well as a timezone. 

40 Llseek Implements the lseek and llseek system calls. 

41 lstat64 All of these system calls return a stat structure 

42 Madvise Give advice about use of memory 

43 Mkdir Attempts to create a directory named pathname 

44 Mknod Creates a filesystem node 

45 mmap2 Asks to map length bytes starting at offset offset 

46 Mprotect Function shall change the access protections 

47 Mremap Expands (or shrinks) an existing memory mapping 

48 Msync Flushes changes made to the in-core copy 

49 Prctl  First argument describing what to do 

50 Ptrace 
Provides a means by which one process may observe and control the execution of 

another process 

51 Pwrite64 pwrite() became pwrite64() in kernel 2.6 

52 Rename Change the name of the file or directory 

53 Setpriority Scheduling priority of the process, process group, or user, 

54 Statfs64 
Statfs() and fstatfs() system calls were not designed with extremely large file sizes in 

mind 

55 Tgkill Sends the signal sig to the thread with the thread ID tid in the thread group tgid. 

56 Unlink Utility to delete files 

Table 1. System calls with their description 

 

Application samples with higher frequency of specific system calls as compared to other applications denote the 

presence of malware .Consider an example in figure 7,where x-axis denotes different application samples and y-axis 

denotes frequency of a system call taken by those application samples.If maximum number of application samples 

are invoking a particular system call with frequency ranging from 10-20,but if one of those applications invokes that 

system call  with a comparatively very high frequency of 100-120,it reflects deviation from the normal behavior 

.Normal and abnormal behavior are further explained in figure 8 and 9 where normal deviation in frequency of 

system calls denote normal behavior of application but excessive deviation of frequency of system call of any 

https://linux.die.net/include/linux/prctl.h
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application denotes abnormal behavior.As in figure 8 ,frequency of a system call is similar for S1,S2,S3,S4 

applications which showcases normal behavior in comparison to figure 9,where there is lot of deviation in behavior 

of sample S1 in contrast to S2,S3,S4.  

 
Fig. 7. Behavior Analysis of Applications 

 
Fig. 8.Example of Normal behaviorFig. 9.Example of Abnormal behavior 

 

Formulation of dynamic analysis involves a series of steps.The different steps followed for the same are described as 

follows: 

 

1. Initializing the emulator and launching it with android (nexus 5). 

2. The application is then installed on the emulator. 

3. Strace command is then executed for hooking the system call on emulator for an interval of 2 to 5 minutes. 

4. Frequency of all system calls utilized by the application during the execution gets collected. 

5. Dataset is generated using the applications and frequency of their respective system 

calls.Furthermore,Machine algorithms are applied and an application is tested for a malware. 

 

Recently, researchers and other organizations prefer applying machine learning methods for malware analysis and 

detection. AsMachine learning is an application of artificial intelligence (AI) that provides systems the ability to 

automatically learn the data model and make predictions. It enhances the decision making capability leading to 

conformity of an application being a malware or a benign application. 

Our work has been illustrated in figure 10 below where different samples of malware and benign are collected and 

run through Geny motion and their frequency of system calls are extracted,thus generating a dataset with class labels 

of malware and benign.To test any application,test data is inputted into classification models and predictions are 

made for malware or benign applications. 

 

 
Fig. 10.Dynamic Analysis Process 



International Journal of Innovations in Engineering and Technology (IJIET)  

http://dx.doi.org/10.21172/ijiet.133.07 

Volume 13 Issue 3 June 2019 043 ISSN: 2319-1058 

IV. METHODOLOGY 

Our work involves developing a robust environment with the help of  an emulator named Genymotion (virtual 

device) for running each application, to protect our own devices from getting affected by the malicious 

application.Each application is executed to observe its behaviour. This involves system call log generation using 

„strace‟ and further creating a robust dataset based on the same.As discussed , the system calls are the interface 

between the user and the kernel. This means all requests from the applications will pass through the System Call 

Interface before its execution through the hardware. So capturing and analyzing the system calls can help us in 

malware detection.Let us consider an example in figure 11, where on x-axis,there are n application samples and their 

frequency of invoking system calls on y-axis reflects the application behavior for benign or malware. 

 
Fig. 11.System calls representing behavior of Applications 

 

Though,System calls like OPEN(opening a file),CLOSE(closing a file),GETID(related to app ID),etc are common 

and are likely to be issued by all applications irrespective of malware and benign applications. But,System calls like 

sendto(), recvfrom() which are used for sending and receiving data from the socket are often utilized by malwares. 

Further, the process control related system call like ptrace() is used for process tracing and controlling the other 

processes, and the sigprocemask() is used for blocking signal to the process, wait4(), futex, getpid() for getting 

process id, getuid() for getting user id of the owner of the process, prctl() for controlling execution of the process, 

are also heavily used. Sapna et al.[4] also found that the malware also executes the system call related to writing and 

reading data from the files stored on phone and SD memory like write(), read(), ioctl(), fcntl64(), stat64(), close(), 

open(), mmap(), munmap(), lseek(), dup() etc. 

To understand the behavior  of an application, we have utilized machine learning algorithms which forms a crucial 

part of Artificial Intelligence that generates new calculations to sum up behaviors utilizing data.The Machine 

learning models learn and explore data, find relevant patterns in data and predicts similar patterns in new data.There 

are different types of machine learning,but we have considered supervised learning in our work.As the dataset 

utilized is supervised and have labels of malware and benign samples.So,we have utilized supervised machine 

algorithms.In Supervised learning method, the historical data consists of expert knowledge in the form of inputs and 

corresponding outputs with labels, and is used to train the models and based on the patterns identified, the model 

performs classification.Classification is a technique to categorize our data into a desired and distinct number of 

classes where we can assign label to each class.Classification with only 2 distinct classes or with 2 possible 

outcomes is referred to as binary classification.In a binary classification problem, we are often given a training set 

with labeled data {xi , yi} ntr i=1, where yi∈  {0, 1} and xi is a vector containing the values of “P” predictors or 

features, namely, xi = (xi1, . . . , xiP ). In our case, System callsfall under predictors.Machine learning algorithms are 

responsiblefor constructing a function  from the training set that separates the two classes. In our experiment, 

popular classification techniques namely k-Nearest-Neighbors(kNN), Decision Trees(DT), Naive Bayes ,Support 

Vector Machines (SVMs), and Random Forests (RF) were utilized to develop the predictive environment to classify 

application into malwares based on frequency of system calls.These algorithms basically identify patterns in datasets 

and classify data on the basis of these patterns as a powerful tool for classifying applications. 

Figure 12 illustrates the steps utilized in data mining approach for our study where the main aim of this experiment 

is to compare the results obtained from different algorithms to verify accuracy of algorithms in terms of malware 

detection .We determined the malware on the basis of the frequency of system calls, when used on the top of  

Sandbox environment and classification methods that result in good accuracy. The dataset consisted of malware and 

benign samples of various formats. Here, we began with running every Android application in emulator 

.Furthermore, recorded the frequency of system calls when the application is introduced in the emulator and applied 

machine learning algorithms to learn the behavior of these applications and finally tested the applications for benign 

and malware. 
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Fig. 12.Steps Involved in Behavior Analysis 

 

But this strategy alone is not sufficient for malware prediction and there is a need to understand whether similar 

category based applications invoke similar system calls.As malware prediction can be done in a better way by 

formulating the behavior of a certain category based application and testing an X application from that category to 

classify it as malware or benign by comparing it with its general behavior of invoking system calls.Capturing and 

analyzing the system call based on certain category of an application can give further information about the behavior 

of a specific type of application,which is lateron considered in our experimentin detail.The results are illustrated in 

section 5. 

 

V. RESULTS AND IMPLEMENTATION 

As noted in the introduction, several researchers have studied different permissions used by an application and 

different strategies to detect malware. In order to evaluate the effects that system calls have on the behavior of 

applications, we have used the well-known R open-source statistical software, along with a number of libraries for 

machine learning models ( randomForest, e101,and caret).Generation of dataset is a prerequisite to model 

construction.In our work,the original dataset is  built using 1000 applications each for benign and malware.Because, 

if data mining is required as a tool to uncover patterns in data,then dataset should be large enough to contain these 

patterns. 

The system calls have been separated in the Dynamic examination stage from the applications and frequency of 

system calls is recorded to detect the presence of malware with the help of machine learning algorithms. The 

purpose of this work was to determine the malware on the basis of the frequency of system calls, when used on the 

top of  Sandbox environment and utilization of classification methods that result in the best prediction. 

As mentioned before,to accomplish the entire process, we have utilized the Geny Motion Emulator. Here, we 

execute every Android application in emulator .Furthermore, the system calls are recorded when the application is 

introduced in the emulator. This procedure records the frequency of system call logs,thus helping in creation of 

dataset as shown in figure 13. 

 

 

 

 

 

Fig. 13. Flow of events for Dataset Creation 

 

Well known classifiers under data mining like k-Nearest-Neighbors, Decision Trees, Support Vector Machines, 

Naive Bayes and Random Forest were evaluated. These algorithms belong to a broad category of parametric and 

non parametric classifiers and the purpose of both types of classifiers is to learn a function that maps input variables 

to output variables from training dataset based on certain parameters.There were  a total of 56 system calls taken as 

parameters in our study. 

Data mining offerdifferent metrices like  true positive value, false positive value,accuracy, precision, recall, and F 

measure to validate the performance of different classifiers on dataset.Accuracy is the ratio of correctly predicted 

malwares to the total no. of samples.Higher accuracy implies that the classifier makes fewer wrong predictions or 

misclassificationsthan correct predictions.For implication of the classification algorithm,dataset was divided into 

Initalizing 

emulator 

Installing apk 

on emulator 

Executing 

strace 

System 

Call Logs 

Creation 

of data set 



International Journal of Innovations in Engineering and Technology (IJIET)  

http://dx.doi.org/10.21172/ijiet.133.07 

Volume 13 Issue 3 June 2019 045 ISSN: 2319-1058 

training set(80%) and a test set(20%) respectively.The models were evaluated on test data  and performance was 

recorded using the above metrices.Since the approach of each algorithm is different,evaluation of all these 

algorithms is important to find out which one is better.We can clearly justify the quality of the dataset since all the 

algorithms are able to identify a considerable number of instances.The overall misclassification by each classifier is 

very low,indicating that classifiers performed really well. The results show that algorithms achieve similar results, 

but performance was slightly better in the case ofk nearest neighbor (kNN),Decision Tree(DT) and Random Forest 

(RF). 

As KNN classifier operates differently and does not learn anything from data rather finds a group of k objects in the 

training set that is closest to the test object.It does not rely on the knowledge of domain.It simply calculates distance 

between two features in order to make classification decisions.Random forest also performed extremely well with an 

accuracy of 1 and correctly predicted the actual class due to majority of decisions taken into consideration utilizing 

different decision trees. 

 

Table 2  presents the performance evaluation of different classifiers used in this study.It helped us indetermining 

which algorithm is more applicable for the Android malware detection. The experimental results for a dataset of real 

malware and benign apps indicate good average accuracy rate using Naïve Bayes,KNN,RF,SVM and Decision Tree, 

respectively.Dynamic analysis results find no significant difference in the  detection accuracy of algorithms except 

naïve  bayes algorithm gives more false positives (benign apps flagged as malware) as a tradeoff for flagging 

malware more comprehensively.Besides,parametric nature of this classifier,it is also prone to prediction errors such 

as bias. Overall, when the frequency of system calls are considered as features, there is minimal difference in the 

detection performance of other algorithms with respect to accuracy and true positive rate as shown in Table 2.In 

conclusion, analyzingfrequency of system calls offer a moderate approach to detect Android malware. 

Metrices Naive Bayes KNN Random Forest SVM Decision tree 

Accuracy 0.91 1.0 1.00 0.99 1.00 

Precision(p) 0.90 1.0 1.00 1.00 1.00 

Recall(r) 0.91 1.0 1.00 0.97 1.00 

F measure 2.7 3.0 3.00 3.00 3.00 

Table 2.Performance of Different Algorithms 

 

The main goal was to develop the proof of concept for the machine learning based malware classification. This was 

utilized for the extraction of the behavior of the samples, which was used as an input to the machine learning 

algorithms. The accuracy was measured for the case of detection of whether the file is malicious and the decision of 

which method performs better was made. 

As the top system calls used by malicious and  benign applications are OPEN(opening a file),CLOSE(closing a 

file),GETID(related to app ID),etc.These system calls are common and are likely to be issued by all applications 

irrespective of malware and benign applications.But our work found out (as illustrated in Figure 14) that high 

frequency of system calls such as Getuid,read,sendto,getpid,recvfrom reflected the presence of malware . 

 

 

 
 

Fig. 14. System calls utilized heavily by malware samples 
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5.1 Category based analysis of Applications 

Our analysis reveals the similarities and differences between benign and malware system calls invoked by 

applications of certain category and shows how frequency of these system calls helps us in analyzing the behavior of 

malicious activity during run time.Thus, making malware detection more effective and easier. 

As Malicious applications usually makes use of different permissions to launch malicious activities.Same is the case 

with  system calls. As there are hundreds of system calls in Android system ,different applications can have different 

requirements of system calls .To prove this fact,an experiment was done and 25 samples of benign and malware 

each for Banking and Gaming applications which belong to two different categories were 

collected.Ourworkthenincluded comparing the system calls of benign Application of Category 1(Banking 

Applications) with benign application of Category 2(Game Applications) .The system calls invoked by most of the 

benign Banking applications includedaccess,clone,dup,ioctl,recvfrom,sches_getparan,writev,getid ,unmask,etcand 

system calls invoked by benign Gaming application included access, brk, clock gettime, close, futex, fchown32, 

getid, getrlimit, llseek, mkdir, munmap, prctl, read,sched_yield,pread64 ,write,etc.As shown in fig15-16,few of the 

system calls were similar in both the cases of Gaming and Banking application like access,clone,dup,open writev etc 

which are being utilized generally to check users‟ permissions for a file,to create child process,to create copy of file 

descriptor,to open the file for reading/writing and to write data into multiple buffers.But there were system calls 

which were being taken by gaming application samples and not by banking application samples.For eg: system calls 

like fchown32,futex,pread64,makedir,getrlimit and llseek were taken by gaming applications but not often by 

banking applications as it involves changing ownership of file,basic locking,getting and setting source limits 

etc.Thus ,different categories of applications can vary in terms of their demands of system calls. 

 
Fig. 15.    System calls invoked by Benign Bank applications 

 

 
Fig. 16.System calls invoked by Benign Game applications 
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Fig. 17.    System calls invoked by Malware Bank applications 

 

 
Fig. 18.    System calls invoked by MalwareGame applications 

 

Figure 16 and 17 clearly showcases that  there is high frequency of certain system calls like 

sendto(),recvfrom(),read(),write()  incase of malware applications for each category as shown on x-axis in 

comparison to frequency of same system calls under genuine applications in figure 15-16.So,it hereby confirms 

thatsystem calls like sendto(),recvfrom(),read(),write() had higher frequencies in both the cases of malware 

applications as stated in the above sectionalso. Thus, this intuitive methodology ofCategory based analysis can  help 

in efficient android malware detection by helping us in analyzing the behavior of malicious activity during run 

time.Thus, making malware detection more effective and easier. 

 

VI. CONCLUSION & FUTURE SCOPE 

The steadily expanding malware dangers have constrained the Android anti-malware industry to build up the 

answers for alleviating malignant application risk on Android cell phones and other Android gadgets. Fundamental 

methodologies identified for this reason and discussed in this paper are: Static approach and Dynamic approach. 
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Static approach could not detect the unknown malwares so, we have defined an approach using system calls under 

dynamic analysis data set was created on the basis of frequency of system calls and different algorithms were 

applied and performance was calculated using machine learning algorithm. Well known data mining classification 

techniques like Naive Bayes, RandomForest,Decision Tree,SVM and KNN were considered. The results are 

analysed and accuracy is calculated.Based on the results,it was concluded that random forest,KNN and Decision tree 

proved to be the best classifiers because they achieved statistically valid results. The main features of our algorithm 

include: Firstly, usage of system call logs i.e. working at the kernel level to find the malicious behaviour of the 

applications. Secondly, dataset is generated and machine learning algorithms are applied.The correctness andquality 

of the dataset is justified with the high accuracy results we obtained.  

This study confirms the potential of data mining techniques in prediction of malwares .Moreover ,it confirms 

category based analysis of applications can further help in better prediction of malwares if there exists any deviation 

from the expected behavior of that category. 

Our future work will include extending our methodology tohybrid malware analysis in Android and comparison of 

the results with our findings in this research.  
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