Two Problems in Integral Sum Labeling

L. Mary Florida ${ }^{1}$, V. Vilfred ${ }^{2}$, S. Asha Alice ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, St. Xavier's Catholic College of Engineering,
Chunkankadai - 629 807, Tamil Nadu, India

Abstract- Harary [4,5] introduced the concepts of sum graph (Σ-graph) and integral sum graph ($\int \Sigma$-graph). In this paper, we prove that graphs $K_{1} \square\left(K_{1} \square \cup \square K_{3}\right)$ and $K_{1} \square\left(K_{2} \cup K_{3}\right)$ are not $\int \Sigma$-graphs though they are spanning subgraph of integral sum graphs $G_{1,3}$ and $G_{2,3}$, respectively. A graph G is an integral sum graph or $\int \sum$-graph if the vertices of G can be labeled with distinct integers so that $e=u v$ is an edge of G if and only if the sum of the labels on vertices u and v is also a label in \mathbf{G}.
Keywords - sum graph or Σ-graph, integral sum graph or $\int \Sigma$-graph, maximal sum graph \mathbf{G}_{n}, integral sum graph $\mathbf{G}_{\Delta \mathrm{n}}$, integral sum graph $\mathbf{G}_{\mathrm{m}, \mathrm{n}}$, comparable and non-comparable graphs, semi-group.

I. INTRODUCTION

The concept of sum graphs and integral sum graphs are introduced by Harary [4,5]. Harary [5] introduced a family of integral sum graphs $G_{n, n}=K_{1}+\left(G_{n}+G_{n}\right)$ over a set of integers $\{-n, \ldots,-2,-1,0,1,2, \ldots, n\}$. Vilfred $[9,10]$ defined $G_{m, n}$, a generalized graph of $G_{n, n}$ and derived different properties of it. Vilfred proved that $G_{m, n}$ is a maximal integral sum graph of order $\mathrm{m}+\mathrm{n}+1$ for $\mathrm{m}, \mathrm{n} \in \mathrm{N} \cup\{0\} \square \square$ and the maximalntegral sum graphs of order 2 n and $2 \mathrm{n}+1$ are $G_{n-1, n}$ and $G_{n, n}$, respectively, $n \in N$ Though the graph $G_{m, n}$ is an integral sum graph for $m, n \in N \cup\{0\} \square$, all spanning sub graphs of $G_{m, n}$ need not be integral sum graphs. Establishing a given graph as not an integral sum graph is a difficult problem. In this paper we prove that the graphs $\mathrm{K}_{1} \square\left(\mathrm{~K}_{4} \square \cup \square \mathrm{~K}_{3}\right)$ and $\mathrm{K}_{1} \square\left(\mathrm{~K}_{2} \cup \mathrm{~K}_{3}\right)$ are not integral sum graphs though they are spanning sub-graph of integral sum graphs $G_{1,3}$ and $G_{2,3}$, respectively. See figures 1 and 2. For all basic ideas in graph theory, we follow [3]. Now let us consider some basic definitions and results on sum and integral sum graphs.

Fig.1. $\mathrm{K}_{1}+\left(\mathrm{K}_{1} \cup \mathrm{~K}_{2}\right)$

Fig.2. $\mathrm{K}_{1}+\left(\mathrm{K}_{2} \cup \mathrm{~K}_{2}\right)$

Definition 1.1 [5] A graph G is an integral sum graph or $\int \sum$-graph if the vertices of G can be labeled with distinct integers so that $u v$ is an edge of G if and only if the sum of the labels on vertices u and v is also a label in $V(G)$. If G is an integral sum graph with respect to a label set S, then G can be denoted as $\quad G=G^{+}(S)$.
Chen [1] obtained several properties of the integral sum labeling of a graph G with $\Delta(G)<|V(G)|-1$. Nicholas, Somasundaram and Vilfred [6] studied the general properties of connected integral sum graph G with $\Delta(\mathrm{G})=$ $|\mathrm{V}(\mathrm{G})|-1$. Vilfred $[9,10]$ defined and studied maximal integral sum graphs. We give below some important properties of integral sum graphs.
Definition 1.2 Let G be a connected graph with maximum degree $\Delta(G)=|V(G)|-1$. Define $V_{\Delta}(G)=\{x \in V(G) /$ $\operatorname{deg}(\mathrm{x})=\Delta(\mathrm{G})\}$.
Theorem 1.3 [1] Let f be an $\int \sum$-labeling of a non-trivial graph G. Then $f(x) \neq 0$ for every vertex x of G if and only if $\Delta(\mathrm{G})<|\mathrm{V}(\mathrm{G})|-1$.
Theorem 1.4 [6] Let f be an $\int \sum$-labeling of a connected graph G and $x, u, v, w \in V(G)$. If $f(u) \neq-f(x)$, then for each $v \in \square(u)$ such that $f(u)+f(v)=f(w)$, either $w=x$ or $x w \in E(G)$.
Theorem 1.5 [6] Let f be an $\int \sum$-labeling of a connected graph G with $\Delta(G)=|V(G)|-1$. If $\left|V_{\Delta}(G)\right| \geq 2$, then
(i) There exists a vertex $x \in V_{\Delta}(G)$ such that $f(x)=0$ and
(ii) For every vertex $y \in V_{\Delta}(G) \backslash\{x\}$, there exists a vertex $\quad y^{\prime} \in \square V(G) V_{\Delta}(G)$ such that $f(y)+f\left(y^{\prime}\right)=0$.

Theorem 1.6 [6] Let f be an $\int \sum$-labeling of a connected graph G of order $k+2$ with $\Delta(G)=|V(G)|-1$ and $\left|V_{\Delta}(G)\right| \geq$ 2. If $y \in V_{\Delta}(G)$ such that $f(y) \neq 0$, then for every vertex $u \in V(G), f(u)=r . f(y)$ where $r \in\{0,1,-1,-2, \ldots,-k\}, k \in N$. Theorem $1.7[6]$ If $G\left(\neq K_{3}\right)$ is a connected $\int \sum$-graph with $\Delta(G)=|V(G)|-1$, then $\left|V_{\Delta}(G)\right| \leq 2$.
Theorem 1.8 [6] Integral sum graphs $G\left(\neq K_{3}\right)$ of order n with $\left|V_{\Delta}(G)\right|=2$ are unique up to isomorphism. (This graph of order n is denoted by $\mathrm{G}_{\Delta \mathrm{n}}$.)

Definition 1.9 [10] Let $G_{m, n}=G^{+}(S)$ where $S=\{-m,-m+1, \ldots,-2,-1,0,1,2, \ldots, n\}, m, n \in m, n \in N \cup\{0\} \square$. Clearly, $G_{m, n}=K_{1}+\left(G_{m}+G_{n}\right)=G_{n, m}$ is an integral sum graph, $m, n \in \square m, n \in N \cup\{0\} \square$ Without loss of generality, hereafter, we consider $\mathrm{m} \leq \mathrm{n}$ for the graph $\mathrm{G}_{\mathrm{m}, \mathrm{n}}$. Integral sum graphs $\mathrm{G}_{4,4}$ and $\mathrm{G}_{4,5}$ are given in figures 3 and 4 .

Fig.3. $G_{4,4}$

Fig.4. $G_{4,5}$

Theorem 1.10 [10] $G_{m, n}$ is an integral sum graph for $m, n \in \square m, n \in N \cup\{0\} \square$ and is a maximal integral sum graph for $\mathrm{m}, \mathrm{n} \in \square \mathrm{N} . \square \square$ The maximal integral sum graphs of order 2 n and $2 \mathrm{n}+1$ are $\mathrm{G}_{\mathrm{n}}-1, \mathrm{n}$ and $\mathrm{G}_{\mathrm{n}, \mathrm{n}}$, respectively, $\mathrm{n} \in \mathrm{N}$ For further readings on graph labeling problems refer [2].

II. MAIN RESULTS

Graph $G_{m, n}=K_{1}+\left(G_{m}+G_{n}\right)$ is an integral sum graph form, $m, n \in N \cup\{0\} \square,[10]$. An interesting problem is given two graphs, G and H , whether $\mathrm{K}_{1}+(\mathrm{G}+\square \mathrm{H})$ is an integral sum graph or not? A special case of the above problem is the case in which G and H are either sum or integral sum graphs. The answer to the above problem seems to be difficult. Graphs $K_{1}+\left(\mathrm{K}_{1}+\square \mathrm{K}_{2}\right)$ and $\mathrm{K}_{1}+\left(\mathrm{K}_{2}+\mathrm{K}_{2}\right)$ are $\int \sum$-graphs, see figures 1 and 2 ., whereas $\mathrm{K}_{1}+\left(\mathrm{K}_{1}+\mathrm{K}_{3}\right)$ and $\mathrm{K}_{1}+\left(\mathrm{K}_{2}+\square \mathrm{K}_{3}\right)$ are not $\int \sum$-graphs, see problems 1 and 2 . Clearly the two graphs are spanning sub-graph of integral sum graphs $G_{1,3}$ and $G_{2,3}$, respectively.

Fig.5. $G=K_{1}+\left(\mathrm{K}_{1} \cup \mathrm{~K}_{3}\right)$

Fig.6. $G=K_{1}+\left(K_{2} \cup K_{3}\right)$

Problem 2.1 The graph $\mathrm{K}_{1}+\left(\mathrm{K}_{1} \cup \mathrm{~K}_{3}\right)$ is not an $\int \sum$-graph.
Solution
Let $G=K_{1}+\left(\mathrm{K}_{1} \cup \mathrm{~K}_{3}\right)$ and $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{u}_{5}\right\}$. If possible, let f be an $\int \sum \square$ labeling of G , then using theorem 1.3, $f\left(u_{1}\right)=0$. Let $f\left(u_{2}\right)=a, f\left(u_{3}\right)=b, f\left(u_{4}\right)=c$ and $f\left(u_{5}\right)=d$ where $0, a, b, c, d$ are all distinct integers. See figure 5.

Therefore, $\{0, a, b, c, d\}=\{0, a, b, c, d, a+b, b+c, c+a\}$ where $a+b, b+c$ and $c+a$ are all different. This implies, two of them are neither equal nor equal to 0 or d . This implies, the three values are $0, \mathrm{~d}$ and the third being one of a,b,c in some order. Let $\mathrm{a}+\mathrm{b}=0, \mathrm{~b}+\mathrm{c}=\mathrm{d}$ and (then) $\mathrm{a}+\mathrm{c}=\mathrm{b}$. All other cases are similar to the above case only.
This implies, $\mathrm{b}=-\mathrm{a}=\mathrm{a}+\mathrm{c}$ which implies, $\mathrm{c}=-2 \mathrm{a}$. This implies, $\mathrm{d}=-3 \mathrm{a}$ which implies, $\mathrm{a}+\mathrm{d}=-2 \mathrm{a}=\mathrm{c}$. This implies, a and d are adjacent in G which is a contradiction. Hence the graph $K_{1}+\left(K_{1} \cup K_{3}\right)$ is not an $\int \sum$-graph.
Problem 2.2 The graph $G=K_{1}+\left(K_{2} \cup K_{3}\right)$ is not an $\int \Sigma \square$ graph
Solution Let $G=K_{1}+\left(K_{2}+K_{3}\right)$ and $V(G)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$. If possible, let f be an $\int \sum \square$ labeling of G. Then using theorem 1.3, $f\left(u_{1}\right)=0$. Let $f\left(u_{2}\right)=a, f\left(u_{3}\right)=b, f\left(u_{4}\right)=c, f\left(u_{5}\right)=d$ and $f\left(u_{6}\right)=e$ where $0, a, b, c, d, e$ are all distinct integers. See figure 6 . Therefore, $\{0, a, b, c, d, e\}=\{0, a, b, c, d, e, a+b, b+c, c+a, d+e\}$ where $a+b, b+c$ and $a+c$ are all different. This implies, two of them are neither equal nor equal to $0, d$ or e.
Now let us consider the following possible cases and their sub-cases. All other cases are similar to the above cases only.

1. $\mathrm{a}+\mathrm{b}=0=\mathrm{d}+\mathrm{e}$ and $\mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a} \square \square \neq 0$ (Two among $\mathrm{a}+\mathrm{b}, \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}, \mathrm{d}+\mathrm{e}$ are 0 .).
$1.1 \mathrm{a}+\mathrm{b}=0=\mathrm{d}+\mathrm{e} ; \mathrm{b}+\mathrm{c}=\mathrm{a} ; \mathrm{c}+\mathrm{a}=\mathrm{d}$ (or e). In this case, we get, $\mathrm{b}=-\mathrm{a} ; \mathrm{c}=2 \mathrm{a} ; \mathrm{d}=3 \mathrm{a}$ and $\mathrm{b}+\mathrm{d}=2 \mathrm{a}=\mathrm{c}$ which implies, u_{3} and u_{5} are adjacent in G which is a contradiction. Thus this case is not possible.
$1.2 \mathrm{a}+\mathrm{b}=0=\mathrm{d}+\mathrm{e} ; \mathrm{b}+\mathrm{c}=\mathrm{d} ; \mathrm{c}+\mathrm{a}=\square$ e.In this case, we get, $0=\mathrm{d}+\mathrm{e}=(\mathrm{b}+\mathrm{c})+(\mathrm{c}+\mathrm{a})=2 \mathrm{c}$ whic implies, $\mathrm{c}=0$, a contradiction. Hence this case is not possible.
2. $\mathrm{a}+\mathrm{b}=0$; $\mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}, \mathrm{d}+\mathrm{e} \square \square \not \square \square 0$ (One among $\mathrm{a}+\mathrm{b}, \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}$ is 0 and $\mathrm{d}+\mathrm{e} \square \neq \square 0$.).

Different possible sub-cases are as follows.
2.1. $a+b=0 ; d+e=a ; b+c, c+a \square \neq 0$.
2.1.1. $a+b=0 ; d+e=a ; b+c=a ; c+a=d$ (or e).

In this case we get, $c=a-b=2 a ; d=c+a=3 a ; e=a-d=-2 a$ which implies, $c+e=0$. This implies, u_{4} and u_{6} are
adjacent in G which is a contradiction. Hence this case is not possible.
2.1.2. $\mathrm{a}+\mathrm{b}=0 ; \mathrm{d}+\mathrm{e}=\mathrm{a} ; \mathrm{b}+\mathrm{c}=\mathrm{d}($ or e$) ; \mathrm{c}+\mathrm{a}=\mathrm{b}$.

In this case we get, $c=b-a=-2 a ; d=b+c=-3 a$.; $e=4 a$. This implies, $a+d=-2 a=c$. This implies, u_{2} and u_{5} are adjacent in G which is a contradiction. Hence this case is not possible.
2.1.3. $\mathrm{a}+\mathrm{b}=0 ; \mathrm{d}+\mathrm{e}=\mathrm{a} ; \mathrm{b}+\mathrm{c}=\mathrm{e}$; ((r d) and $\mathrm{c}+\mathrm{a}=\mathrm{d}$. (or e).

In this case, $a=d+e=(c+a)+(b+c)=2 c ; d=c+a=3 c ; b=-a=-2 c$ which implies, $b+d=c$. This implies u_{3} and u_{5} are adjacent in G which is a contradiction. Hence this case is not possible.
2.2. $\mathrm{a}+\mathrm{b}=0 ; \mathrm{d}+\mathrm{e}=\mathrm{c} ; \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a} \square \neq 0$.
2.2.1. $\mathrm{a}+\mathrm{b}=0 ; \mathrm{d}+\mathrm{e}=\mathrm{c} ; \mathrm{b}+\mathrm{c}=\mathrm{d} ; \mathrm{b}+\mathrm{c}=\mathrm{e}$; (or d) and $\mathrm{c}+\mathrm{a}=\mathrm{d}$. (or e).

In this case we get, $c=d+e=(b+c)+(c+a)=2 c$. This implies, $c=0$ which is a contradiction. Hence this case is not possible.
2.2.2. $\mathrm{a}+\mathrm{b}=0 ; \mathrm{d}+\mathrm{e}=\mathrm{c} ; \mathrm{b}+\mathrm{c}=\mathrm{a} ; \mathrm{c}+\mathrm{a}=\mathrm{d}$. (or e).

In this case, $b=-a ; c=a-b=2 a ; d=c+a=3 a ; e=c-d=-a$. This implies, $a+e=0$ which implies u_{2} and u_{6} are adjacent in G . This is a contradiction and hence this case is not possible.
3. $d+e=0$ and $a+b, b+c, c+a ~ \square \neq 0$ (None of $a+b, b+c, c+a$ is 0 and $d+e=0$.).

In this case, $a+b, b+c, c+a$ take at the most one value among a, b, c and two among the three, $a+b, b+c, c+a$ take values d and e. And so let $a+b=c ; b+c=d$ and $c+a=e$. This implies, $0=d+e=(b+c)+(c+a)=3 c$. This implies, $c=0$ which is a contradiction. Hence this case is not possible.
4. $\mathrm{a}+\mathrm{b}, \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}, \mathrm{d}+\mathrm{e} \square \neq 0$ (None of $\mathrm{a}+\mathrm{b}, \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}, \mathrm{d}+\mathrm{e}$ is 0 .).
4.1. $d+e=a ; a+b=d ; b+c=a ; c+a=e$.

In this case, $a=d+e=(a+b)+(c+a)=3 a$. This implies, $a=0$ which is a contradiction. Hence this case is not possible. 4.2. $d+e=a ; a+b=c ; b+c=e ; c+a=d$.

In this case, $a=d+e=(c+a)+(b+c)=3 c ; b=c-a=-2 c$ and $e=b+c=-c$. This implies, $c+e=0$ which implies, u_{4} and u_{6} are adjacent in G . This is a contradiction. Hence this case is not possible.
Thus in all possible cases we get a contradiction and hence $\int \Sigma \square$ labeling doesn't exist for the graph $G=K_{1}+\left(K_{2}\right.$ $\left.\cup \mathrm{K}_{3}\right)$. Hence the graph $\mathrm{K}_{1}+\left(\mathrm{K}_{2} \cup \mathrm{~K}_{3}\right)$ is not an $\int \sum \square$ graph.
Remark 2.3 $\mathrm{G}_{\mathrm{k}, \mathrm{m}-\mathrm{k}}$ are the only maximal $\int \sum$-graphs of order $\mathrm{m}+1$ having at least one of it's vertices is of degree m , $\mathrm{m}, \mathrm{k}+1, \mathrm{~m}-\mathrm{k}+1 \in \mathrm{~N}$. Though any proper spanning super graph of a maximal $\int \sum$-graph need not be an $\int \sum$-graph, the converse part is not known. For example, $\mathrm{K}_{1}+\left(\mathrm{K}_{1} \cup \square \mathrm{~K}_{3}\right)$ and $\mathrm{K}_{1}+\left(\mathrm{K}_{2} \cup \mathrm{~K}_{3}\right)$ are not $\int \sum$-graphs. Secondly whether $\mathrm{G}_{\mathrm{k}, \mathrm{m}-\mathrm{k}}$'s are the only maximal $\int \sum$-graphs of order $\mathrm{m}+1, \mathrm{~m}, \mathrm{k}+1, \mathrm{~m}-\mathrm{k}+1 \in \mathrm{~N} . \square \square \square$ Thirld when the graph $\mathrm{K}_{1}+(\mathrm{G} \cup$ $\mathrm{H})$ is an $\int \sum$-graph?
Remark 2.4 Let u be a vertex of degree $n-1$ in an $\int \sum$-graph G of order $n \geq 3$. Clearly, $G \neq K_{n}$ for $n \geq 3$. Then by adding a new edge e, by joining two non-adjacent vertices of G, to G and joining a new vertex v with u, we may think that the resultant graph H is also an $\sum \sum$-graph. But it is not always the case. The graph $\mathrm{G}=\mathrm{K}_{1,2}=\mathrm{K}_{3}$-e and its new graph $\mathrm{H}=\mathrm{K}_{1}+\left(\mathrm{K}_{1} \cup \square \mathrm{~K}_{2}\right)$ are $\int \sum$-graphs whereas $\mathrm{G}=\mathrm{K}_{4}$-e is an $\int \sum$-graph but its new graph $H=K_{1}+\left(\mathrm{K}_{1} \cup \mathrm{~K}_{3}\right)$ is not an $\int \sum$-graph. See figures $7,8,9$ and 10 and problem 2.1. But the general result is not known.

0

$$
\begin{equation*}
\mathrm{u}=0 \quad \mathrm{v}=3 \tag{u}
\end{equation*}
$$

$$
\mathrm{u}=0
$$

v

Fig.7. $\mathrm{G}=\mathrm{K}_{3}$-e Fig.8. $\mathrm{H}=\mathrm{K}_{1}+\left(\mathrm{K}_{1} \cup \mathrm{~K}_{2}\right)$

Fig.9. $G=K_{4}-\mathrm{e}$

Fig.10. $\mathrm{H}=\mathrm{K}_{1}+\left(\mathrm{K}_{1} \cup \mathrm{~K}_{3}\right)$

III. REFERENCES

[1] Chen,Z., Harary's conjecture on integral sum graphs, Discrete Math., 160 (1990) 241-244.
[2] Gallian,J.A., A Dynamic Survey of Graph Labeling, The electronic Journal of Combinatorics, 12 (2009), \#DS6.
[3] Harary,F., Graph Theory, Addison Wesley, Reading Mass. (1969).
[4] F Harary,F., Sum graphs and difference graphs, Cong. Numer., 72 (1990) 101-108D.
[5] Harary,F., Sum graphs over all integers, Discrete Math. 124 (1994) 99-105.
[6] Nicholas,T., Somasundaram,S. and Vilfred,V., More Results on Sum graphs, Proceedings of the Conference on Graph Theory and Applications held at Anna University, Chennai, India (2001) 73-83.
[7] Nicholas,T., Somasundaram,S. and Vilfred,V., Some Results on Sum graphs, Journal of Comb. Inf. \& System Sci. 26 (2001) 135-142.
[8] Nicholas,T. and Vilfred,V., Sum graph and edge reduced sum number, Proceedings of the National Seminar on Algebra and Discrete Mathematics held at Kerala University, Trivandrum, India (2002) 87-97.
[9] Vilfred,V., On Integral Sum graphs, National Seminar on Algebra and Discrete Mathematics held at Kerala University, Trivandrum, India (January 2005).
[10] Vilfred,V. and Mary Florida, L., Anti-sum and anti-integral Sum Graphs, National Seminar on Algebra and Discrete Mathematics held at Kerala University, Trivandrum, India (January 2005).

