Two Problems in Integral Sum Labeling

L. Mary Florida¹, V. Vilfred², S. Asha Alice³

^{1,2,3}Department of Mathematics, St. Xavier's Catholic College of Engineering, Chunkankadai – 629 807, Tamil Nadu, India

Abstract- Harary [4,5] introduced the concepts of sum graph (Σ -graph) and integral sum graph ($\int\Sigma$ -graph). In this paper, we prove that graphs $K_1 \square$ ($K_1 \square \bigcup \square K_3$) and $K_1 \square$ ($K_2 \bigcup K_3$) are not $\int\Sigma$ -graphs though they are spanning sub-graph of integral sum graphs $G_{1,3}$ and $G_{2,3}$, respectively. A graph G is an integral sum graph or $\int\Sigma$ -graph if the vertices of G can be labeled with distinct integers so that e = uv is an edge of G if and only if the sum of the labels on vertices u and v is also a label in G.

Keywords – sum graph or Σ -graph, integral sum graph or $\int \Sigma$ -graph, maximal sum graph G_n , integral sum graph $G_{\Delta n}$, integral sum graph $G_{m,n}$, comparable and non-comparable graphs, semi-group.

I. INTRODUCTION

The concept of sum graphs and integral sum graphs are introduced by Harary [4,5]. Harary [5] introduced a family of integral sum graphs $G_{n,n} = K_1 + (G_n + G_n)$ over a set of integers $\{-n, ..., -2, -1, 0, 1, 2, ..., n\}$. Vilfred [9,10] defined $G_{m,n}$, a generalized graph of $G_{n,n}$ and derived different properties of it. Vilfred proved that $G_{m,n}$ is a maximal integral sum graph of order m+n+1 for $m, n \in \mathbb{N} \cup \{0\} \square$ and the maximal integral sum graphs of order 2n and 2n+1 are $G_{n-1,n}$ and $G_{n,n}$, respectively, $n \in \mathbb{N}$ Though the graph $G_{m,n}$ is an integral sum graph for $m, n \in \mathbb{N} \cup \{0\} \square$, all spanning sub graphs of $G_{m,n}$ need not be integral sum graphs. Establishing a given graph as not an integral sum graph is a difficult problem. In this paper we prove that the graphs $K_1 \square (K_1 \square \bigcup \square K_3)$ and $K_1 \square (K_2 \bigcup K_3)$ are not integral sum graphs though they are spanning sub-graph of integral sum graphs $G_{1,3}$ and $G_{2,3}$, respectively. See figures 1 and 2. For all basic ideas in graph theory, we follow [3]. Now let us consider some basic definitions and results on sum and integral sum graphs.

Definition 1.1 [5] A graph G is an integral sum graph or \sum -graph if the vertices of G can be labeled with distinct integers so that uv is an edge of G if and only if the sum of the labels on vertices u and v is also a label in V(G). If G

is an integral sum graph with respect to a label set S, then G can be denoted as $G = G^+(S)$. Chen [1] obtained several properties of the integral sum labeling of a graph G with $\Delta(G) < |V(G)|$ -1. Nicholas, Somasundaram and Vilfred [6] studied the general properties of connected integral sum graph G with $\Delta(G) = |V(G)|$ -1. Vilfred [9,10] defined and studied maximal integral sum graphs. We give below some important properties of integral sum graphs.

Definition 1.2 Let G be a connected graph with maximum degree $\Delta(G) = |V(G)| - 1$. Define $V_{\Delta}(G) = \{x \in V(G) / \deg(x) = \Delta(G)\}$.

Theorem 1.3 [1] Let f be an \sum -labeling of a non-trivial graph G. Then $f(x) \neq 0$ for every vertex x of G if and only if $\Delta(G) < |V(G)| - 1$.

Theorem 1.4 [6] Let f be an \sum -labeling of a connected graph G and x,u,v,w \in V(G). If f(u) \neq -f(x), then for each $v \in \Box$ (u) such that f(u)+f(v) = f(w), either w = x or xw \in E(G).

Theorem 1.5 [6] Let f be an \sum -labeling of a connected graph G with $\Delta(G) = |V(G)| - 1$. If $|V_{\Delta}(G)| \ge 2$, then (i) There exists a vertex $x \in V_{\Delta}(G)$ such that f(x) = 0 and

(ii) For every vertex $y \in V_{\Delta}(G) \setminus \{x\}$, there exists a vertex $y' \in \Box V(G) \setminus V_{\Delta}(G)$ such that f(y)+f(y') = 0. Theorem 1.6 [6] Let f be an $\int \Sigma$ -labeling of a connected graph G of order k+2 with $\Delta(G) = |V(G)| - 1$ and $|V_{\Delta}(G)| \ge 2$. If $y \in V_{\Delta}(G)$ such that $f(y) \neq 0$, then for every vertex $u \in V(G)$, f(u) = r.f(y) where $r \in \{0, 1, -1, -2, ..., -k\}$, $k \in N$. Theorem 1.7 [6] If $G \ (\neq K_3)$ is a connected $\int \Sigma$ -graph with $\Delta(G) = |V(G)| - 1$, then $|V_{\Delta}(G)| \le 2$.

Theorem 1.8 [6] Integral sum graphs G (\neq K₃) of order n with $|V_{\Delta}(G)| = 2$ are unique up to isomorphism. (This graph of order n is denoted by G_{Δn}.)

Definition 1.9 [10] Let $G_{m,n} = G^+(S)$ where $S = \{-m, -m+1, ..., -2, -1, 0, 1, 2, ..., n\}$, $m, n \in M, n \in N \cup \{0\} \square$. Clearly, $G_{m,n} = K_1 + (G_m + G_n) = G_{n,m}$ is an integral sum graph, $m, n \in \square$ $m, n \in N \cup \{0\} \square$ Without loss of generality, hereafter, we consider $m \le n$ for the graph $G_{m,n}$. Integral sum graphs $G_{4,4}$ and $G_{4,5}$ are given in figures 3 and 4.

Theorem 1.10 [10] $G_{m,n}$ is an integral sum graph for $m,n \in \square$ $m,n \in \mathbb{N} \cup \{0\} \square$ and is a maximal integral sum graph for $m,n \in \square \mathbb{N}$. \square \square The maximal integral sum graphs of order 2n and 2n+1 are $G_{n-1,n}$ and $G_{n,n}$, respectively, $n \in \mathbb{N} \blacksquare$ For further readings on graph labeling problems refer [2].

II. MAIN RESULTS

Graph $G_{m,n} = K_1 + (G_m + G_n)$ is an integral sum graph form, $m,n \in N \cup \{0\} \square$, [10]. An interesting problem is given two graphs, G and H, whether $K_1 + (G + \square H)$ is an integral sum graph or not? A special case of the above problem is the case in which G and H are either sum or integral sum graphs. The answer to the above problem seems to be difficult. Graphs $K_1 + (K_1 + \square K_2)$ and $K_1 + (K_2 + K_2)$ are $\int \Sigma$ -graphs, see figures 1 and 2., whereas $K_1 + (K_1 + K_3)$ and $K_1 + (K_2 + \square K_3)$ are not $\int \Sigma$ -graphs, see problems 1 and 2. Clearly the two graphs are spanning sub-graph of integral sum graphs $G_{1,3}$ and $G_{2,3}$, respectively.

Problem 2.1 The graph $K_1 + (K_1 \cup K_3)$ is not an $\int \Sigma$ -graph.

Solution

Let $G = K_1 + (K_1 \cup K_3)$ and $V(G) = \{u_1, u_2, u_3, u_4, u_5\}$. If possible, let f be an $\sum \Box$ labeling of G, then using theorem 1.3, $f(u_1) = 0$. Let $f(u_2) = a$, $f(u_3) = b$, $f(u_4) = c$ and $f(u_5) = d$ where 0,a,b,c,d are all distinct integers. See figure 5. Therefore, $\{0, a, b, c, d\} = \{0, a, b, c, d, a+b, b+c, c+a\}$ where a+b, b+c and c+a are all different. This implies, two of them are neither equal nor equal to 0 or d. This implies, the three values are 0, d and the third being one of a,b,c in some order. Let a+b = 0, b+c = d and (then) a+c = b. All other cases are similar to the above case only.

This implies, b = -a = a+c which implies, c = -2a. This implies, d = -3a which implies, a+d = -2a = c. This implies, a and d are adjacent in G which is a contradiction. Hence the graph $K_1 + (K_1 \cup K_3)$ is not an \sum -graph.

Problem 2.2 The graph $G = K_1 + (K_2 \cup K_3)$ is not an $\int \Sigma \Box$ graph

Solution Let $G = K_1 + (K_2 + K_3)$ and $V(G) = \{u_1, u_2, u_3, u_4, u_5, u_6\}$. If possible, let f be an $\sum \Box$ labeling of G. Then using theorem 1.3, $f(u_1) = 0$. Let $f(u_2) = a$, $f(u_3) = b$, $f(u_4) = c$, $f(u_5) = d$ and $f(u_6) = e$ where 0,a,b,c,d,e are all distinct integers. See figure 6. Therefore, $\{0, a, b, c, d, e\} = \{0, a, b, c, d, e, a+b, b+c, c+a, d+e\}$ where a+b, b+c and a+c are all different. This implies, two of them are neither equal nor equal to 0, d or e.

Now let us consider the following possible cases and their sub-cases. All other cases are similar to the above cases only.

1. a+b = 0 = d+e and b+c, $c+a \square \square \neq 0$ (Two among a+b, b+c, c+a, d+e are 0.).

1.1 a+b = 0 = d+e; b+c = a; c+a = d (or e). In this case, we get, b = -a; c = 2a; d = 3a and b+d = 2a = c which implies, u_3 and u_5 are adjacent in G which is a contradiction. Thus this case is not possible.

1.2 a+b = 0 = d+e; b+c = d; $c+a = \Box$ e.In this case, we get, 0 = d+e = (b+c)+(c+a) = 2c whic implies, c = 0, a contradiction. Hence this case is not possible.

2. a+b = 0; b+c, c+a, $d+e \square \square \neq \square 0$ (One among a+b, b+c, c+a is 0 and $d+e \square \neq \square 0$.).

Different possible sub-cases are as follows.

2.1. a+b = 0; d+e = a; b+c, $c+a \Box \neq 0$.

2.1.1. a+b=0; d+e=a; b+c=a; c+a=d (or e).

In this case we get, c = a-b = 2a; d = c+a = 3a; e = a-d = -2a which implies, c+e = 0. This implies, u_4 and u_6 are adiacant in C which is a contradiction. Hence this case is not possible

adjacent in G which is a contradiction. Hence this case is not possible.

2.1.2. a+b = 0; d+e = a; b+c = d(or e); c+a = b.

In this case we get, c = b-a = -2a; d = b+c = -3a.; e=4a. This implies, a+d = -2a = c. This implies, u_2 and u_5 are

adjacent in G which is a contradiction. Hence this case is not possible.

2.1.3. a+b = 0; d+e = a; b+c = e; (or d) and c+a = d. (or e).

In this case, a = d+e = (c+a)+(b+c) = 2c; d = c+a = 3c; b = -a = -2c which implies, b+d = c. This implies u_3 and u_5

are adjacent in G which is a contradiction. Hence this case is not possible.

2.2. a+b=0; d+e=c; b+c, $c+a\Box \neq 0$.

2.2.1. a+b = 0; d+e = c; b+c = d; b+c = e; (or d) and c+a = d. (or e).

In this case we get, c = d+e = (b+c)+(c+a) = 2c. This implies, c = 0 which is a contradiction. Hence this case is not possible.

2.2.2. a+b = 0; d+e = c; b+c = a; c+a = d. (or e).

In this case, b = -a; c = a-b = 2a; d = c+a = 3a; e = c-d = -a. This implies, a+e = 0 which implies u_2 and u_6 are

adjacent in G. This is a contradiction and hence this case is not possible.

3. d+e = 0 and a+b, b+c, $c+a \Box \neq 0$ (None of a+b, b+c, c+a is 0 and d+e = 0.).

In this case, a+b, b+c, c+a take at the most one value among a, b, c and two among the three, a+b, b+c, c+a take values d and e. And so let a+b = c; b+c = d and c+a = e. This implies, 0 = d+e = (b+c)+(c+a) = 3c. This implies, c = 0 which is a contradiction. Hence this case is not possible.

4. a+b, b+c, c+a, d+e $\Box \neq 0$ (None of a+b, b+c, c+a, d+e is 0.).

4.1. d+e = a; a+b = d; b+c = a; c+a = e.

In this case, a = d+e = (a+b)+(c+a) = 3a. This implies, a = 0 which is a contradiction. Hence this case is not possible. 4.2. d+e = a; a+b = c; b+c = e; c+a = d.

In this case, a = d+e = (c+a)+(b+c) = 3c; b = c-a = -2c and e = b+c = -c. This implies, c+e = 0 which implies, u_4 and u_6 are adjacent in G. This is a contradiction. Hence this case is not possible.

Thus in all possible cases we get a contradiction and hence $\sum \square$ labeling doesn't exist for the graph $G = K_1 + (K_2 \cup K_3)$. Hence the graph $K_1 + (K_2 \cup K_3)$ is not an $\sum \square$ graph.

Remark 2.3 $G_{k,m-k}$ are the only maximal \sum -graphs of order m+1 having at least one of it's vertices is of degree m, m,k+1,m-k+1 \in N. Though any proper spanning super graph of a maximal \sum -graph need not be an \sum -graph, the converse part is not known. For example, $K_1+(K_1 \cup \Box K_3)$ and $K_1+(K_2 \cup K_3)$ are not \sum -graphs. Secondly whether

 $G_{k,m-k}$'s are the only maximal \sum -graphs of order m+1, m,k+1,m-k+1 \in N. $\Box \Box \Box$ Think when the graph $K_1 + (G \cup H)$ is an \sum -graph?

Remark 2.4 Let u be a vertex of degree n-1 in an $\int \Sigma$ -graph G of order $n \ge 3$. Clearly, $G \ne K_n$ for $n \ge 3$. Then by adding a new edge e, by joining two non-adjacent vertices of G, to G and joining a new vertex v with u, we may think that the resultant graph H is also an $\int \Sigma$ -graph. But it is not always the case. The graph $G = K_{1,2} = K_3$ -e and its $K_1 + (K_1 \cup \Box K_2)$ are ∫∑-graphs new = whereas G K₁-e graph Η = is $\int \Sigma$ -graph but its new graph H = K₁+(K₁ \cup K₃) is not an $\int \Sigma$ -graph. See figures 7,8,9 and 10 and problem 2.1. But the general result is not known.

0 u = 0 v = 3 u = 0 u v

III. REFERENCES

- [1] Chen,Z., Harary's conjecture on integral sum graphs, Discrete Math., 160 (1990) 241- 244.
- [2] Gallian, J.A., A Dynamic Survey of Graph Labeling, The electronic Journal of Combinatorics, 12 (2009), #DS6.
- [3] Harary, F., Graph Theory, Addison Wesley, Reading Mass. (1969).
- [4] F Harary, F., Sum graphs and difference graphs, Cong. Numer., 72 (1990) 101-108D.
- [5] Harary, F., Sum graphs over all integers, Discrete Math. 124 (1994) 99-105.
- [6] Nicholas, T., Somasundaram, S. and Vilfred, V., More Results on Sum graphs, Proceedings of the Conference on Graph Theory and Applications held at Anna University, Chennai, India (2001) 73-83.
- [7] Nicholas, T., Somasundaram, S. and Vilfred, V., Some Results on Sum graphs, Journal of Comb. Inf. & System Sci. 26 (2001) 135-142.
- [8] Nicholas, T. and Vilfred, V., Sum graph and edge reduced sum number, Proceedings of the National Seminar on Algebra and Discrete Mathematics held at Kerala University, Trivandrum, India (2002) 87-97.
- [9] Vilfred, V., On Integral Sum graphs, National Seminar on Algebra and Discrete Mathematics held at Kerala University, Trivandrum, India (January 2005).
- [10] Vilfred,V. and Mary Florida, L., Anti-sum and anti-integral Sum Graphs, National Seminar on Algebra and Discrete Mathematics held at Kerala University, Trivandrum, India (January 2005).