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Abstract- The Cheetah Chase Algorithm (CCA) is a recently developed meta-heuristic optimization algorithm which is 

based on the hunting mechanism of Cheetah. Similarly to other meta-heuristic algorithms, the main problem faced by 

CCA is slow convergence speed. So to enhance the global convergence speed and to get better performance, this paper 

introduces chaos theory into CCA optimization process. Various chaotic maps are considered in the proposed chaotic 

CCA (CCCA) methods for tuning the main parameter of CCA which helps in controlling exploration and exploitation. 

The proposed CCCA methods are benchmarked on twenty well-known test functions. The results prove that the chaotic 

maps (especially Tent map) are able to improve the performance of CCA. 
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I. INTRODUCTION 

In many optimization problems, it is required to find the optimal solution to a given problem under highly complex 

constraints in a reasonable amount of time. Generally, modern intelligent methods are used to deal with these types 

of optimization problems. There are various methods that are proposed in order to solve these problems but they are 

insufficient to produce better results. In the past few decades, meta-heuristic optimization algorithms have achieved 

a lot of attention in scientific communities with significant developments, especially for solving many complex 

optimization problems. Prior to meta-heuristic algorithms, Hill-Climbing, Random Search and Simulated Annealing 

(SA), were the traditional algorithms used to solve the optimization problems (Yang, X. S. 2010). Traditional 

algorithms start their search from a single point and require gradient information that consumed a lot of time to 

reach the global optima (Sivanandam, S. N. 2007). Due to their limited pertinence and intricacy of constraints, these 

algorithms were not very effective for solving real world applications like localization problem (Arora, S., & Singh, 

S. 2017), economical optimization (Gao, X. Z., et.al. 2010), structural optimization problems (Gandomi, A. H., et. 

al. 2013) and engineering design problems (Coello, C. A. C. 2000) which involve different constraints to be 

gratified. 

Basically, meta-heuristic algorithms impersonate biological or physical phenomenon to handle complex real world 

optimization problems. Unlike classical techniques, these meta-heuristic algorithms are mostly derivation-free 

(Yang, X. S. 2010). Due to their stochastic nature, meta- heuristic algorithms have superior abilities to avoid local 

optima entrapment. These algorithms can be applied to various fields due to their simplicity, flexibility, robustness, 

and efficiency (Sivanandam, S. N. 2007).Some of the most prominent nature inspired meta-heuristic algorithms 

developed so far are Particle Swarm Optimization (PSO) (Eberhart, R., & Kennedy, J. 1995; Kennedy, J. 2011), 

Artificial Bee Colony (ABC) (Dorigo, M., & Di Caro, G. 1999; Dorigo, M., & Gambardella, L. M. 1997), Firefly 

Algorithm (FA) (Yang, X. S. 2010), Biogeography-Based Optimization algorithm (BBO) (Simon, D. 2008), Bat 

Algorithm (Gandomi, A. H., et. al. 2013; Tsai, P. W. 2015), Krill-Herd (KH) (Gandomi, A. H., & Alavi, A. H. 

2012), Cat Swarm Optimization (Shu-Chuan et al. 2006),Grey Wolf Optimizer (GWO) (Mirjalili, S., & Lewis, A. 

2014),Ant Lion Optimizer (ALO) (Mirjalili, S. 2015),Butterfly Optimization Algorithm (BOA) (Arora, S., & Singh, 

S. 2015)and most recently Whale Optimization Algorithm (CCA)(Mirjalili, S., & Lewis, A. 2016). 

Above all, the most challenging task encountered in the development of any meta-heuristic algorithm is to find a 

proper balance between exploration and exploitation due to the stochastic nature of the optimization process 

(Mirjalili, S., & Lewis, A. 2016). The exploration phase helps the optimizer to globally explore the search space as 

extensively as possible. Also, the population faces some abrupt changes in this phase. In contrast, the exploitation 

phase involves the refinement of the promising solutions obtained from the exploration phase. Here, the population 

encounters small abrupt changes (Alba, E., & Dorronsoro, B. 2005). 

CCA is a recently developed nature-inspired meta-heuristic that imitates the social behavior of Cheetah 

(Goudhaman.M, 2018). This algorithm is inspired by the process of hunting and chasing of Cheetah to capture its 

prey with the parameters of high speed, velocity and greater accelerations. The method includes three main steps of 

hunting, i.e., encompassing prey, searching for prey and chasing the prey. It has been proved that this algorithm is 

able to show very competitive results compared to other meta-heuristic algorithms in solving various real world 

problems. To further enhance the performance this paper introduces chaos theory into CCA. 
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With the development of the non-linear dynamics chaos theory has been extensively utilized in various applications 

(Pecora, L. M., &Carroll, T. L. 1990). Chaos theory is related to the study of chaotic dynamical systems that are 

highly sensitive to initial conditions and includes infinite unstable periodic motions. In order to improve 

performance, chaos has been employed in various meta-heuristic algorithms, which results in better convergence 

speed and avoidance from local optima entrapment (Kellert, S. H. 1994). Although it appears to be stochastic, 

providing chaotic behavior does not crucially need stochastic. Deterministic systems are also able to show chaotic 

behaviors. Earlier, chaos theory has been utilized by various meta-heuristic algorithms such as genetic algorithm 

(Li-Jiang, Y., & Tian-Lun, C. 2002), harmony search (Alatas, B. 2010), PSO (Liu, B. et.al. 2005),ABC (Alatas, B. 

2010), FA (Yang, X. S. et.at. 2013), KH(Wang, G. G. et.al. 2014), BOA (Arora, S., & Singh, S. 2017) and 

GWO(Kohli, M., & Arora, S. 2017) to enhance the performance of the algorithms by tuning certain parameters. 

The aim of this paper is to introduce Chaotic Cheetah Chase Algorithm (CCA) based methods in which different 

chaotic systems are used to replace the critical parameter of CCA that helps to switch the local and global searching 

ability of CCA. A subset of unimodal and multimodal benchmark functions have been employed in order to evaluate 

the proposed CCCA. 

The rest of the paper is organized as follows. Review of CCA is presented in Section 2. The chaotic maps that 

describe chaotic sequences for CCA are described in Section 3. In Section 4, the proposed CCCA have been 

presented. The experimental results have been described in Section 5. Finally, the conclusions and future work have 

been discussed in Section 6. 

 

1.1 Cheetah Chase Algorithm (CCA) 

The Cheetah is a giant and energetic civet that was once found all through Asia, Africa and certain places of Europe. 

Cheetahs are one of Africa's most energetic predators and are most famous for their monstrous speed when in a 

chase. Equipped for achieving speeds of more than 60mph for minimum span of time, Cheetah is the speediest land 

vertebrate on the earth. The Cheetah is one of a kind among Africa's civets principally on the grounds that they are 

most dynamic amid the day, which keeps away from rivalry for nourishment from other substantial predators like 

Lions and Hyenas that chase amid the cooler night. The Cheetah has outstanding visual perception thus chases 

utilizing sight by first stalking its prey from between 10 to 30 meters away, and after that pursuing it when the time 

is correct.[17][18] 

The light and thin body of the cheetah influences it to appropriate to short, dangerous blasts of speed, hasty 

acceleration, and a capability to execute extraordinary alters in course while moving at speed. These behaviours 

represent unique features of the cheetah's capability to capture fast moving prey.  

Cheetahs can start from 0 miles for per hour to 65 miles per hour in only 3.5 seconds. Cheetahs can achieve a best 

speed anyplace in the middle of 60 and 70 miles per hour, varies on the size of cheetah. But, the fascinating thing is 

that cheetahs can just run that quick for 20 to 30 seconds. Along these lines, they can't maintain that speed for long 

circumstances. What is the reason they can't run that quick for long? All things considered, in light of the fact that 

keeping up that speed for any more extended than 20-30 seconds could have an exceptionally negative impact on 

their organs, and the cheetah could experience the ill effects of extraordinary over-effort and over-warming. 

 

 
Fig 3.1 Cheetah and its prey movement during Cheetah hunting process 

 

 

 



International Journal of Innovations in Engineering and Technology (IJIET)  

http://dx.doi.org/10.21172/ijiet.151.03 

Volume 15 Issue 1 December 2019 023 ISSN: 2319-1058 

 
Fig 3.2 Graphical sum of the static heave and sway acceleration axes during cheetah hunting its prey. 

 

Elliot et al., (1977) gave an applied model to prey securing by earthly carnivores depicting four noteworthy 

components; look, stalk, assault, and stifle. Of these, the assault is the most power-requesting (Williams et al., 

2014), ordinarily including complex fast moves, supported by obviously entangled behavioural alternatives for the 

both predators and prey.  

The speediest land vertebrate, the cheetah, can fasten from a standing start to 95 km/h in only three seconds, which 

compares to an acceleration of 8.8 m/s2. Cheetahs can just keep up their quickest pace (111 km/h) for roughly 400 

m before their body overheats and their muscles start to tire and create lactic corrosive from fatigue. 

 

Step 1: Initialization of the parameters like speed, velocity, acceleration, time and 

distance. 

Step 2: Initialize total time, tc and total distance travelled dc. 

Step 3: While (t < Tmax), // Multiple numbers of iterations based on number of 

Cheetah’s. 

Step 4: At start node measure the parameters like speed (sc), velocity (vc ) and 

acceleration (ac).  

// Start of the chase Cheetah can accelerate to top speed for first few seconds. 

Step 5: Move on to next node and update parameters. 

Step 6: If prey captured by Cheetah 

                  Step 6.1:  Estimate the total time, tc = tc1 + tc2.,  

   Where tc1 is time to get the cheetah to accelerate to top speed. 

           tc2 is that travel certain distance at top speed  

                Step 6.2: Estimate the total distance dc = dc1 + dc2   

                Where dc1 and dc2 are the distances went in times tc1 and tc2 

respectively.  

                Step 6.3: Estimate distance the prey can go in time tc, dp = dp1 + dp2,  

               Step 6.4: Estimate the maximum distance travelled by prey dmax= dc – 

dp.   

       Else 

           Repeat step 4. 

Step 8: End while. 

Step 9: Select the best possible shortest path node details with other parameters 

Speed (sc), Velocity (vc ) and Acceleration (ac).. 

Step 10: Post-process and Visualization. 

The pseudo code of the Cheetah Chase Algorithm 
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Cheetah Chase to its Prey 

Figure 3.3: Cheetah Chase to its Prey 

 
Flowchart of Cheetah Chase Algorithm 
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II. CHAOTIC MAPS 

In this section, we present ten 1-D non-invertible chaotic maps that are utilized to produce chaotic sets. This set of 

chaotic maps with initial point 0.7 has been chosen with different behaviors. The initial point can be chosen any 

number between 0 and 1 (or depends on the range of chaotic map). However, it should be noted that the initial value 

may have significant impacts on the fluctuation pattern of some of the chaotic maps (Saremi, S.2014). Recently, a 

lot of chaotic maps were discovered primarily by mathematicians and physicians applicable to different domains of 

human activity. In line with this, the majority of these were applied to different algorithms for solving the various 

real-world problems. Therefore, the more applicable 

chaotic maps tackling the optimization algorithms are used in the current research work as shown in Table 1 (Kohli, 

M., & Arora, S. 2017;Gandomi, A. H et al. 2013; Gandomi, A. H & Yang X. S. 2014). 

 

III. CHAOTIC CHEETAH CHASE ALGORITHM (CCCA) 

In spite of having good convergence rate, CCA still cannot perform that better in finding the global optima which 

affect the convergence rate of the algorithm. So, to reduce this affect and to improve its efficiency, CCCA algorithm 

is developed by introducing chaos in CCA algorithm itself. Generally, chaotic comes from the word ‘chaos’ which 

means the property of a complex system whose behavior is so unpredictable, and map means mapping or associating 

chaos behavior in the algorithm with some parameter using a function. Due to the ergodicity and non- repetition 

properties of chaos, it can perform overall searches at higher speeds compared to the stochastic searches that 

basically rely on probabilities (Santos Coelho, L., & Mariani, V. C. 2008). Chaotic maps are the maps which show 

complex and dynamic behavior in the non-linear systems (Pecora, L. M., &Carroll, T. L. 1990). 

 

Table 1 Chaotic Maps 

S. No Name Chaotic map 

1 Logistic xi+1 = axi(1-xi) 

2 Cubic 
xi+1 = axi(1- ) 

3 Sine 
xi+1 =  sin ( xi) 

4 Sinusoidal 
xi+1 =  a  sin ( xi) 

5 Singer 
xi+1 = µ(7.86xi – 23.31  + 28.75  - 13.302875 

), µ = 1.07 

6 Circle 
xi+1 = mod(xi + b - (  sin (2 xk), 1) 

7 Iterative 
xi+1 = sin (a xi) 

8 Tent xi+1 = {xi / 0.7 xi < 0.7  

          {10/3 (1 – xi)} xi  0.7 

9 Piecewise  xi+1 = xi / P 0 ≤ xi < P 

xi – P / 0.5 - P  P ≤ xi < 0.5 

P = 0.4 

1 – P - xi / 0.5 – P0.5 ≤ xi < 1 - P 

1 - xi  / P0.5 1- P ≤ xi < 1 

10 Gauss/mouse 
xi+1 = {  / mod(xi , 1)} xi = 0,  

otherwise 

1/ xi mod(1) = 1/xi – [1/xi] 

 

Due to their dynamic behavior, chaotic maps have been widely acknowledged in the field of optimization which 

helps optimization algorithm in exploring the search space more vigorously and globally (Yang, D., Li, G., & 

Cheng, G. 2007).In almost all meta-heuristic algorithms with stochastic components, randomness is achieved by 

using probability distributions. It can be advantageous to replace such randomness by using chaotic maps. In order 

to introduce chaos in optimization algorithm, different chaotic maps having different mathematical equations are 

used that are listed in Table 1. Since last decade, chaotic maps have been extensively appreciated in the field of 

optimization algorithms in exploring the search space more dynamically and globally. In consonance with different 

human’s domain a large variation of chaotic maps designed by physicians, researchers and mathematicians are 
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available in the optimization field (He, D., He, C. 2001). Out of all these, ten most significant uni-dimensional 

chaotic maps (Gandomi, A. H., & Yang, X. S. 2014) have been employed in the present work to tackle CCCA, 

details of which are given in Table 1. 

The convergence rate of CCA has been positively influenced by utilizing chaotic maps as these maps persuade chaos 

in the feasible region which is predicted only for very short initial time and is stochastic for a longer period of time 

(Yang, D.,& Cheng, G.2007). Pseudo code of the proposed CCCA algorithm is illustrated in Algorithm 2. 

The optimization procedure of the proposed CCCA is also presented in the form of flowchart given in Fig 1. The 

very first step of the flowchart implicates the stochastic initialization of population of whales. Then, a respective 

chaotic map is chosen to be mapped with the algorithm along with the initialization of its first chaotic number and a 

variable (Gandomi, A. H., & Yang, X. S. 2014). After this the parameters of the CCCA algorithm involved in 

controlling the exploration and exploitation mechanism specifically a, A, C, l and p are initialized which are same as 

in CCA. Also, the chaotic number of the chaotic map is initialized to adjust the parameter ‘p’ of CCA which is 

highlighted in Fig 1.In the next step, fitness of all the whales initialized in the search space is evaluated using the 

various standard benchmark functions. The whale with the highest fitness is assumed to be the current best search 

agent. The current best search agent will keep updating its position using Eq. (1), when the value of control 

parameter A< 1. Similarly, when the value of parameter A≥ 1, a random whale is chosen and the position of the 
current best search agent is updated using Eq. (8) if there is a new best search agent than the last one. Sequentially 

the fitter whale will keep updating its position and at the end may get the first position as optimal solution. The 

value of parameter ‘p’ is also updated along with the course of iterations using Eq. (3) and Eq. (4). At the end of the 

last iteration, the best search agent will be considered as the most optimal solution by the CCCA algorithm. 

 

 
Fig. 1. Flowchart of optimization procedure of CCCA 
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Initialize the generation counter t and randomly initialize the whale’s population Xi(i=1, 2,…,n) 
Evaluate the fitness of each search agent to find the best search agent X* 

Initialize the value of the chaotic mapx0 randomly 

while (t < maximum number of iterations) 

Update the chaotic number using the respective chaotic map equation for each search agent 

Update a, A, C, l and p 

if1 (p < 0.5) 

if2(│A│< 1) 

Update the position of the current search agent by the Eq. (1) 

else if2 (│A│≥ 1) 
Select a random search agent (Xrand) 

Update the position of the current search agent by Eq. (8) 

end if2 

else if1 (p ≥ 0.5) 
Update the position of the current search by the Eq. (5) 

end if1 

end for 

Check if any search agent goes beyond the search space and amend it 

Calculate the fitness of each search agent 

Update X* if there is a better solution 

t=t+1 

end while 

return X* 

Algorithm 2. Pseudo-code of CCCA algorithm 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In order to measure and test the performance of every novel optimization algorithm, the algorithm must deal with 

some well-defined test functions. In this section, various experiments on optimization benchmark problems are 

implemented to verify the performance of the proposed meta-heuristic CCCA method. Twenty well-known 

benchmark functions (Digalakis, J. G., 2001, Yao, X., 1999) have been utilized in order to check the performance of 

CCCA. These functions are divided into two categories: unimodal and multimodal. Unimodal benchmark functions 

have single optima and they are well suited for benchmarking exploitation. In contrast, multimodal benchmark 

functions have more than one optima that makes them more challenging than unimodal functions. One of the optima 

is called global optima and the rest are called local optima. Avoiding the local optima and determining the global 

optimum should be the main characteristics of any powerful meta-heuristic algorithm. Therefore, the multimodal 

benchmark functions are responsible for testing exploration and avoiding the entrapment in local optima. Note that 

the minima of most of the unimodal and multimodal benchmark functions is 0 except some functions ,i.e., F10, F15, 

F16 and F20. The properties of unimodal and multimodal benchmark functions are listed in Table 2, where Dim 

indicates the dimension of the function, and Range is the boundary of the function’s search space. The performance 

of CCCA with different chaotic maps and their results have been discussed in Section 5.1. Also, the qualitative 

analysis and the statistical testing of the results have been clearly described in Sections 5.2 and 5.3 respectively. 

For the results of various CCCA’s, the population size of the whales is taken 30 and 50 iterations are performed. The 

results are averaged over thirty independent runs.CCCA1 to CCCA10 utilize Logistic, Cubic, Sine, Sinusoidal, 

Singer, Circle, Iterative, Tent, Piecewise and Gauss/mouse maps, respectively as shown in Table 1. It can be seen 

from the Table 3 that CCCA6 andCCCA7 algorithms shows worse results as compared to CCA algorithm. This 

shows that, Circle and Iterative chaotic maps are not able to improve the performance of CCA algorithm. In contrast, 

CCCA1, CCCA2, CCCA3, CCCA4, CCCA5, CCCA8, CCCA9 and CCCA10 algorithms shows much better results 

as compared to CCA algorithm. In other words, Logistic, Cubic, Sine, Sinusoidal, Singer, Tent, Piecewise and 

Gauss/mouse chaotic maps are able to enhance the performance of CCA algorithm successfully. From the results of 

Table 3, it is proved that the Tent–based CCA algorithm yields the best results on all the test functions.  The p 

values depicted that this supremacy is statistically significant. It can also be seen from the table that the Cubic, Sine, 

Piecewise and Tent chaotic maps yield the best results in more than thirteen test functions. On the other hand, Circle 

and Iterative maps have provided worse results in more than thirteen test functions. 
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S. 

No 

Bench Mark 

Function 

Formula Dim Range Optimal 

Value 

F1 Sphere fx  = 2i 30 [-100,100] 0 

F2  

Beale 
fx  = (1.5 – xi + xi xi+1 )2 + (2.25 – xi + xi )2 +(2.25 

– xi + xi )2   

2 [-4.5,4.5] 0 

F3 Cigar fx  = 2i 30 [-100,100] 0 

F4  

Step 

 

fx  = 2 

30 [-100,100] 0 

F5 QuarticNoise fx  = 2 30 [-1.28,1.28] 0 

F6 Bohachevsky fx= +2.0 -0.3cos(3 +0.7 

 

2 [-100,100] 0 

F7  

Ackley 
fx  = - 20 exp(0.02)  / D 

) + 20 +exp 

 

30 [-

32.768,32.768] 

0 

F8  

Griewank fx  =   
30 [-600,600] 0 

F9  

 

Levy 

 

fx  = sin2(  + 

 2 [1+ 10sin2( + 

(  

 

30 [-10,10] 0 

F10 Michalewitz 
fx  = 2m 

10 [-100,100] 0 

F11 Rastrigin fx  =( - 10 cos 2  + 10 ) 30 [-5.12,5.12] 0 

F12 Alpine fx  =  30 [-100,100] 0 

F13 Schaffer fx  = ( (50  2 [-100,100] 0 

F14  

Rosenbrock 

 

fx  = 100(  

 

30 [-10,10] 0 

F15  

Easom 

fx  = cos 

( ) 

2 [-100,100] -1 

F16  

Shubert 

 

fx  = 

(  

 

2 [-10,10] -186.73 

F17  

Schwefel 1.2 
} 2 

30 [-10,10] 0 

F18  

Schwefel 

2.21 

 30 [-10,10] 0 

F19  

Schwefel 

2.22  
 

30 [-10,10] 0 

F20  

Schwefel 

2.26 

 

 
 

 

30 [-500,500] -

12569.5 
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4.1. Qualitative analysis 

Qualitative analysis on different benchmark functions for further effective evaluation of the performance of CCCA 

has also been done. The line graphs of convergence of various benchmark functions using CCCA algorithm have 

been shown in Figs. 2-6, which helps to analyze the convergence rate of the algorithm more evidently. To clearly 

notice and analyze the convergence curves of CCCA on various chaotic maps the graphs have been plotted on 50 

iterations. Table 3 shows that on average CCCA8 (Tent map) performs better than other methods on nine of the 

benchmarks when searching for function minimum. CCCA2, CCCA3 and CCCA7 (Cubic, Sine, and Iterative 

respectively) are the second best maps performing best on seven out of twenty benchmarks. CCCA1, CCCA4, 

CCCA5, and CCCA10 (Logistic, Sinusoidal, Singer and Gauss/mouse respectively)are the third most effective and 

have shown the best performance on six benchmarks. The values shown in these figures are the average function 

optimum achieved from thirty runs. Here, all the values are true function values. 

Fig.2 shows the values obtained by the ten chaotic maps on the F01 Sphere function, which is also known as de 

jong’s function and has a single global value F01min=0, therefore it is easy to solve. From Fig.2 CCCA9 

(Piecewise map) has the fastest convergence rate towards the global solution and overtakes all other methods. 

CCCA6and CCCA7 (Circle and Iterative maps respectively) fail to find the global value within the maximum 

number of iterations. 

Fig.3 displays the function values for the F03Cigar function. CCCA8 (Tent map) shows the fastest convergence rate 

and overtakes all other methods. It can also be seen that only CCCA6 and CCCA7 (Circle and Iterative respectively) 

are inferior to CCCA8 (Tent map). Otherwise, all other maps are very close to CCCA8 in showing a very good 

convergence rate. 

Fig.4 illustrates the values achieved for the ten methods when using the F08 Greiwank function. F08 has a strange 

property, as it is much easier to solve for higher dimensions than lower dimensions (Liang, J. J., & Baskar, S. 2006). 

From Fig. 4 all the maps have shown the fastest convergence rate towards the global optimum than CCA except 

CCCA6, CCCA7, and CCCA10 (Circle, Iterative and Gauss/mouse maps respectively). 

Fig. 5 shows the functions values for the F13 Schaffer function, which is a unimodal function. From Fig. 5, CCCA6 

(Circle map) performs better than other nine methods while 

CCCA7 (Iterative map) performs second best in this function. 

Fig. 6 reveals the function values for the F18 Schwefel 2.21 function. At first glimpse, it is obvious that CCCA8 has 

the fastest convergence rate towards the global solution. CCCA8 

(Tent map) reaches the optimal solution significantly earlier than other methods. From Fig. 6, it is also illustrated 

that CCCA9 and CCCA10 (Piecewise and Gauss/mouse maps respectively) are only inferior to CCCA8 (Tent map) 

and perform second best in this unimodal function.  

Considering the results shown in Fig. 2-6, it can be concluded that CCCA has superior performance than CCA. 

Further, CCCA8 (Tent map) have provided superior results on nine benchmark functions as compared to CCA. 

 

4.2. Statistical testing 

To evaluate the performance of meta-heuristic algorithms, statistical tests should be conducted (Derrac, J. et.al. 

2011). Specifically, it is not adequate to compare algorithms based on the mean and standard deviation values 

(García, S. et.al. 2009), and a statistical test is necessary to prove that a proposed new algorithm presents a 

significant improvement compared to other algorithms. In order to judge whether the results of the algorithms differ 

from each other in a statistically significant way, a nonparametric statistical test, Wilcoxon’s rank-sum test 

(Wilcoxon, F. 1945) is carried out at 5% significance level. The average (mean) and standard deviation (SD) of the 

best solutions obtained in the last iteration are reflected in Table 3. The p values calculated in the Wilcoxon’s rank-

sum are given in the results as well. In the tables, N/A indicates “not applicable”, meaning that the corresponding 

algorithm could not be compared with itself in the rank-sum test. Generally, it is considered that p values < 0.05 can 

be considered as sufficient indication against the null hypothesis. Note that the best results are highlighted in bold 

face and p values > 0.05 are underlined. Generally speaking, the results of the chaotic maps on all the benchmark 

functions follow the order of Tent < Cubic Sine Piecewise < Logistic Singer Sinusoidal Gauss/mouse < Circle 

Iterative. Note that the ‘ ’ sign signifies an approximately equal number of successful results of different chaotic 

maps in many benchmark functions. This comparison shows that the Tent map shows the best (minimum) results, 

whereas the Circle and the Iterative maps provide the worst (maximum) results. The underlying reason behind the 

better performance of CCCA using Tent chaotic map is that it provides better exploration and local optima 

avoidance capability. In other words, the Tent map bring different patterns of search behaviour for whales which 
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results in showing higher exploration capability. The results of convergence curves also prove that the superior 

exploration of the Tent map does not have a negative impact on the exploitation. To sum up, the results show that 

the Tent chaotic map shows very effective results and can successfully enhance the convergence rate of CCCA. 

 

Table 3 Results of 10 chaotic maps on all benchmark functions on CCCA 

Sphere Mean Std. Dev. p Values Beale Mean Std. Dev. p Values 

CCA 2.58E-52 7.98E-52 0.005 CCA 1.62E-01 3.41E-01 0.386 

CCCA1 3.00E-69 6.10E-69 0.445 CCCA1 4.14E-03 6.46E-03 0.241 

CCCA2 1.11E-67 3.51E-67 0.799 CCCA2 9.93E-03 2.49E-02 0.093 

CCCA3 1.80E-70 3.41E-70 0.959 CCCA3 8.94E-04 8.36E-04 N/A 

CCCA4 2.00E-69 5.606E-69 0.721 CCCA4 5.57E-03 1.44E-02 0.878 

CCCA5 2.95E-70 4.45E-70 0.721 CCCA5 5.83E-01 5.16E-01 0.005 

CCCA6 1.64E+08 2.23E+08 0.005 CCCA6 7.24E-01 2.32E-01 0.005 

CCCA7 1.14E+08 1.43E+08 0.005 CCCA7 7.24E-01 2.32E-01 0.005 

CCCA8 3.26E-70 7.52E-70 0.445 CCCA8 2.24E-01 4.67E-01 0.028 

CCCA9 1.68E-70 2.58E-70 N/A CCCA9 1.80E-01 3.68E-01 0.013 

CCCA10 2.78E-70 7.71E-70 0.508 CCCA10 9.75E-01 3.98E-01 0.005 

 

Step Mean Std. Dev. p Values Quadrtic Noise Mean Std. Dev. p Values 

CCA 0.00E+00 0.00E+00 N/A CCA 3.05E-02 3.37E-02 0.799 

CCCA1 0.00E+00 0.00E+00 N/A CCCA1 4.08E-02 4.59E-02 0.386 

CCCA2 0.00E+00 0.00E+00 N/A CCCA2 3.60E-02 2.64E-02 0.059 

CCCA3 0.00E+00 0.00E+00 N/A CCCA3 3.34E-02 2.39E-02 0.169 

CCCA4 0.00E+00 0.00E+00 N/A CCCA4 1.95E-02 1.83E-02 0.878 

CCCA5 0.00E+00 0.00E+00 N/A CCCA5 3.09E-02 2.50E-02 0.386 

CCCA6 2.91E+04 1.40E+04 0.005 CCCA6 2.40E+00 1.12E+00 0.005 

CCCA7 2.81E+04 6.24E+03 0.005 CCCA7 1.82E+00 6.20E-01 0.005 

CCCA8 0.00E+00 0.00E+00 N/A CCCA8 1.91E-02 1.54E-02 N/A 

CCCA9 0.00E+00 0.00E+00 N/A CCCA9 4.47E-02 3.51E-02 0.047 

CCCA10 0.00E+00 0.00E+00 N/A CCCA10 2.11E-02 2.99E-02 0.575 

 

Ackley Mean Std. Dev. p Values Greiwank Mean Std. Dev. p Values 

CCA -1.44E-16 0.00E+00 N/A CCA 0.00E+00 0.00E+00 N/A 

CCCA1 -1.44E-16 0.00E+00 N/A CCCA1 0.00E+00 0.00E+00 N/A 

CCCA2 -1.44E-16 0.00E+00 N/A CCCA2 0.00E+00 0.00E+00 N/A 

CCCA3 -1.44E-16 9.86E-21 N/A CCCA3 0.00E+00 0.00E+00 N/A 

CCCA4 -1.4E-16 9.86E-21 N/A CCCA4 0.00E+00 0.00E+00 N/A 

CCCA5 -1.4E-16 8.05E-21 N/A CCCA5 0.00E+00 0.00E+00 N/A 

CCCA6 1.81E+01 1.11E+00 0.005 CCCA6 1.41E+02 6.63E+01 0.005 

CCCA7 1.78E+01 1.86E+00 0.005 CCCA7 1.04E+02 4.36E+01 0.005 

CCCA8 -1.44E-16 0.00E+00 N/A CCCA8 0.00E+00 0.00E+00 N/A 

CCCA9 -1.44E-16 0.00E+00 N/A CCCA9 0.00E+00 0.00E+00 N/A 

CCCA10 -1.44E-16 0.00E+00 N/A CCCA10 0.00E+00 0.00E+00 N/A 

 
Michalewitz Mean Std. Dev. p Values Rastrigin Mean Std. Dev. p Values 

CCA -3.04E+00 7.21E-01 0.013 CCA 0.00E+00 0.00E+00 N/A 

CCCA1 -2.98E+00 3.67E-01 0.005 CCCA1 0.00E+00 0.00E+00 N/A 

CCCA2 -2.98E+00 7.03E-01 0.009 CCCA2 0.00E+00 0.00E+00 N/A 

CCCA3 -2.96E+00 6.15E-01 0.005 CCCA3 0.00E+00 0.00E+00 N/A 

CCCA4 -2.77E+00 5.21E-01 0.005 CCCA4 0.00E+00 0.00E+00 N/A 

CCCA5 -3.02E+00 8.82E-01 0.009 CCCA5 0.00E+00 0.00E+00 N/A 

CCCA6 -4.27E+00 7.78E-01 0.386 CCCA6 2.54E+02 4.56E+01 0.005 

CCCA7 -4.40E+00 8.75E-01 N/A CCCA7 2.55E+02 4.71E+01 0.005 

CCCA8 -2.51E+00 5.05E-01 0.005 CCCA8 0.00E+00 0.00E+00 N/A 
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CCCA9 -2.94E+00 6.06E-01 0.007 CCCA9 0.00E+00 0.00E+00 N/A 

CCCA10 -2.68E+00 7.53E-01 0.009 CCCA10 0.00E+00 0.00E+00 N/A 

 

Schaffer Mean Std. Dev. p Values Rosenbrock Mean Std. Dev. p Values 

CCA 5.13E-26 9.66E-26 0.005 CCA 2.88E+01 2.44E-02 N/A 

CCCA1 4.37E-29 1.10E-28 0.005 CCCA1 2.88E+01 4.59E-02 N/A 

CCCA2 1.43E-28 3.62E-28 0.005 CCCA2 2.88E+01 3.61E-02 N/A 

CCCA3 5.17E-29 1.06E-28 0.005 CCCA3 2.88E+01 2.48E-02 N/A 

CCCA4 1.39E-28 4.39E-28 0.005 CCCA4 2.88E+01 1.73E-02 N/A 

CCCA5 4.05E-29 1.27E-28 0.005 CCCA5 2.88E+01 2.91E-02 N/A 

CCCA6 4.04E-37 1.16E-36 N/A CCCA6 4.61E+05 5.17E+05 0.005 

CCCA7 2.24E-36 7.05E-36 0.093 CCCA7 1.95E+05 2.18E+05 0.005 

CCCA8 2.19E-30 5.37E-30 0.005 CCCA8 2.88E+01 3.78E-02 0.317 

CCCA9 2.79E-31 4.49E-31 0.005 CCCA9 2.88E+01 1.45E-02 0.317 

CCCA10 8.37E-29 1.71E-28 0.005 CCCA10 2.88E+01 2.46E-02 0.317 

 

Shubert Mean Std. Dev. p Values Schwefel 1.2 Mean Std. Dev. p Values 

CCA -7.17E+01 1.42E+01 0.108 CCA 7.90E-184 0.00E+00 0.005 

CCCA1 -6.09E+01 1.27E+01 0.059 CCCA1 9.85E-210 0.00E+00 0.005 

CCCA2 -7.62E+01 1.12E+01 0.074 CCCA2 2.44E-206 0.00E+00 0.005 

CCCA3 -7.18E+01 1.23E+01 0.074 CCCA3 2.76E-206 0.00E+00 0.005 

CCCA4 -7.59E+01 1.42E+01 0.074 CCCA4 9.80E-210 0.00E+00 0.005 

CCCA5 -7.24E+01 1.12E+01 0.074 CCCA5 4.51E-206 0.00E+00 0.005 

CCCA6 -7.84E+01 2.04E+01 N/A CCCA6 8.60E-290 0.00E+00 0.646 

CCCA7 -7.64E+01 1.92E+01 1.000 CCCA7 1.14E-292 0.00E+00 N/A 

CCCA8 -7.81E+01 1.01E+01 0.110 CCCA8 6.25E-208 0.00E+00 0.005 

CCCA9 -6.92E+01 1.22E+01 0.074 CCCA9 2.58E-209 0.00E+00 0.005 

CCCA10 -7.50E+01 9.88E+00 0.074 CCCA10 5.54E-206 0.00E+00 0.005 

 

Schwefel 2.22 Mean Std. Dev. p Values Schwefel 2.26 Mean Std. Dev. p Values 

CCA 1.93E-32 4.96E-32 0.005 CCA -1.14E+04 1.62E+03 N/A 

CCCA1 1.07E-40 2.21E-40 0.241 CCCA1 -1.03E+04 -1.03E+04 0.314 

CCCA2 3.31E-41 7.46E-41 N/A CCCA2 -9.38E+03 2.72E+03 0.074 

CCCA3 1.55E-39 4.31E-39 0.059 CCCA3 -9.35E+03 2.26E+03 0.086 

CCCA4 5.56E-39 1.74E-38 0.386 CCCA4 -8.58E+03 1.64E+03 0.017 

CCCA5 1.04E-40 1.19E-40 0.037 CCCA5 -1.11E+04 1.10E+03 0.386 

CCCA6 1.17E+03 2.10E+02 0.005 CCCA6 -5.59E+03 1.30E+02 0.005 

CCCA7 1.17E+03 3.80E+02 0.005 CCCA7 -7.21E+03 2.38E+03 0.008 

CCCA8 1.15E+03 1.59E+02 0.005 CCCA8 -8.45E+03 1.46E+03 0.011 

CCCA9 4.55E-41 6.96E-41 0.203 CCCA9 -8.46E+03 2.15E+03 0.013 

CCCA10 1.67E-40 3.95E-40 0.386 CCCA10 -9.88E+03 1.90E+03 0.028 

 

Cigar Mean Std. Dev. p Values Bohachevsky Mean Std. Dev. p Values 

CCA 7.82E-57 1.83E-56 0.005 WOA -5.55E-17 0.00E+00 N/A 

CCCA1 2.49E-71 7.77E-71 0.114 CWOA1 -5.55E-17 0.00E+00 N/A 

CCCA2 8.57E-71 2.52E-70 0.059 CWOA2 -5.55E-17 0.00E+00 N/A 

CCCA3 4.63E-72 1.28E-71 0.285 CWOA3 -5.55E-17 0.00E+00 N/A 

CCCA4 1.68E-72 4.97E-72 0.386 CWOA4 -5.55E-17 0.00E+00 N/A 

CCCA5 5.49E-74 1.58E-73 0.575 CWOA5 -5.55E-17 0.00E+00 N/A 

CCCA6 1.26E+04 8.88E+03 0.005 CWOA6 1.76E-01 3.09E-01 0.109 

CCCA7 1.07E+04 5.56E+03 0.005 CWOA7 1.76E-01 3.09E-01 0.043 

CCCA8 4.64E-74 1.26E-73 N/A CWOA8 -5.55E-17 0.00E+00 N/A 

CCCA9 2.59E-73 7.42E-73 0.445 CWOA9 -5.55E-17 6.13E-21 N/A 



International Journal of Innovations in Engineering and Technology (IJIET)  

http://dx.doi.org/10.21172/ijiet.151.03 

Volume 15 Issue 1 December 2019 032 ISSN: 2319-1058 

CCCA10 5.26E-73 1.23E-72 0.575 CWOA10 -5.55E-17 0.00E+00 N/A 

 

Levy Mean Std. Dev. p Values Alpine Mean Std. Dev. p Values 

CCA 2.24E+00 4.58E-01 N/A CCA 5.11E-31 8.75E-31 0.005 

CCCA1 2.37E+00 9.38E-01 0.003 CCCA1 9.74E-39 2.99E-38 0.386 

CCCA2 2.41E+00 3.73E-01 0.003 CCCA2 3.30E-39 9.78E-39 0.059 

CCCA3 2.37E+00 9.38E-01 0.003 CCCA3 3.30E-39 9.78E-39 0.646 

CCCA4 2.54E+00 4.94E-01 0.003 CCCA4 6.17E-40 1.44E-39 0.386 

CCCA5 2.63E+00 5.68E-01 0.003 CCCA5 8.91E-42 1.06E-40 N/A 

CCCA6 2.41E+00 3.73E-01 0.003 CCCA6 7.22E+03 2.15E+03 0.005 

CCCA7 6.25E+01 3.15E+01 0.003 CCCA7 6.76E+03 1.28E+03 0.005 

CCCA8 2.60E+00 3.55E-01 0.003 CCCA8 4.34E-39 1.33E-38 0.959 

CCCA9 2.45E+00 3.61E-01 0.003 CCCA9 3.95E-40 6.09E-40 0.203 

CCCA10 2.43E+00 4.18E-01 0.003 CCCA10 1.08E-39 2.58E-39 0.333 

 

Easom Mean Std. Dev. p Values Schwefel 2.21 Mean Std. Dev. p Values 

CCA -8.76E-01 3.09E-01 N/A CCA 1.10E-18 3.48E-18 0.005 

CCCA1 -4.71E-01 4.99E-01 0.047 CCCA1 2.97E-29 8.70E-29 0.959 

CCCA2 -3.33E-01 4.49E-01 0.028 CCCA2 1.11E-31 2.31E-31 0.575 

CCCA3 -6.12E-01 4.49E-01 0.139 CCCA3 4.07E-30 7.94E-30 0.017 

CCCA4 -6.07E-01 4.32E-01 0.047 CCCA4 1.52E-30 3.93E-30 0.575 

CCCA5 -4.58E-01 4.92E-01 0.037 CCCA5 1.42E-28 4.49E-28 0.169 

CCCA6 0.00E+00 0.00E+00 0.005 CCCA6 8.31E+01 1.06E+01 0.005 

CCCA7 -2.00E-01 4.22E-01 0.028 CCCA7 8.63E+01 7.44E+00 0.005 

CCCA8 -3.73E-01 4.84E-01 0.009 CCCA8 1.07E-31 1.46E-31 N/A 

CCCA9 -3.70E-01 4.82E-01 0.059 CCCA9 1.11E-30 2.26E-30 0.333 

CCCA10 -8.37E-01 3.01E-01 0.241 CCCA10 1.24E-30 2.52E-30 0.445 

 

 
Fig.2. Performance comparisons on the F01 Sphere function. 
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Fig.3. Performance comparison on the F03 Cigar function. 

 

 
 

Fig.4. Performance comparison on the F08 Greiwank function. 
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Fig.5. Performance comparison on the F13 Schaffer function. 

 

 
Fig.6. Performance comparison on the F18 Schwefel 2.21 function. 
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V. CONCLUSIONS AND FUTURE SCOPE 

In the presented paper chaos theory and Cheetah Chase Algorithm (CCA) are hybridized in order to design an 

improved chaotic Cheetah Chase Algorithm (CCCA). To adjust the key parameter, p, of CCA, a wide variety of 

chaotic maps has been utilized. Twenty benchmark functions dividing into multimodal and unimodal problems have 

been employed in order to compare and verify the performance of CCCAs. Generally speaking, the results proved 

that chaotic maps are able to significantly improve the performance of CCA. Among all the chaotic maps, the Tent 

map has considerably enhanced the performance of CCA. The chaos induced by the chaotic maps in the search 

space is the main reason behind the superior performance of CCCA. The chaos helps the controlling parameter to 

find the optimal solution more quickly and thus refine the convergence rate of the algorithm. For future work, it 

would be interesting to employ CCCA algorithm for solving real-world engineering problems. 
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