

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.172.06

Volume 17 Issue 2 September 2020 61 ISSN: 2319-1058

Management of Bi-Temporal Properties of
Sql/Nosql Based Architectures – A Review

Lyn Kurian, Jyotsna A

Department of Computer Science and Information Systems Engineering
Rajagiri School of Engineering and Technology, Cochin, Kerala, India

Abstract- Data engineering is the most important field in computer science engineering. Data is computed, stored and
manipulated according to the user requirement. Data can be text, picture, audio, video or document which is in various
formats. This paper deals with various database management systems that stores and manipulates data efficiently,
including banking system, scientific or commercial systems. Traditionally, we use RDBMS like MS SQL Server, IBM
DB2, Oracle, MySQL and Microsoft Access for transactional processing and analytical processing. On the advent of Big
Data, the strict RDBMS is not a customized solution on considering the performance and scalability aspects of the
Information Technology that needs today. The new era needs new technologies. Google introduced the concept of NoSQL
Databases in 2005, which led to the revolution of NoSQL databases like Noe4j, HBase, Redis, Mango DB etc. But
migration to NoSQL Databases is a challenging area for the database architects in various fields of business. Different
tools and techniques for database migration, query translation and query optimization is being adopted and the research
area is open. This paper comprises the categorization of the proposed and implemented bi-temporal databases along with
their bi-temporal properties till date.

Keywords –SQL databases, NoSQL databases, Bi-temporal Databases

I. INTRODUCTION

RDBMS are dominating structures in database management systems because of the services they provide. RDBMS
applies relational model. All of them use the SQL language and they differ in their enhancements. The RDBMS
popularity faced a set of challenges due to emergence of the INTERNET, and the vast amount of data is to be
handled.

The important properties of RDBMS are performance and scalability but that is not feasible for many of the newly
distributed applications. The complexity of ACID (Atomicity, Consistency, Isolation, and Durability) feature in
design of RDBMS to ensure the transactional reliability is not required in some applications and is the reason for
other aspects such as the performance. For example, in social networks, high scalability with high degree of
structure, flexibility and set of simple operations is awaited. Due to these, many systems emerged to support
scalability. They depend on a set of simple operations and do not consider the strict relational databases design
principles. These systems are called NoSQL (Not only SQL). The term NoSQL generally refers non-relational
databases.

Big data played the role for NoSQL and for its growing popularity. The continuous availability for data required
NoSQL databases. Google was the leader in adopting these systems by using BigTable in 2006, followed by
Dynamo introduced by Amazon in 2007. They have the properties such as ability to scale rapidly, performance,
continuous availability and partition tolerance which overcome even the different versions of relational database
model.
But the majority systems do not support bi-temporal properties that are an assertions in many applications. The
temporal data management is seen important in many well-known applications which includes insurance, airline
ticket reservations, medical applications and more. The temporal data management is implemented in the RDBMS,
and temporal databases are mostly the extended RDBMS itself. On the other hand, the temporal properties need to
be implemented and used in NoSQL databases that produces large amount of timestamped data, such as sensor data,
financial tickers and e-commerce.

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.172.06

Volume 17 Issue 2 September 2020 62 ISSN: 2319-1058

[5] NoSQL databases divides into four main categories: Key-value stores, Document stores, Column Oriented
Stores, and Graph Databases. NoSQL databases are heterogeneous and has different structures, and thus they have
unique properties which categorizes them. Embedding bi-temporal properties into these databases are discussed here
in the paper.

This paper continues as follows. Literature review is explained in section II. Concluding remarks are given in
section III.

II. LITERATURE REVIEW

A. A Generalisation Approach to Temporal Data Models and their Implementations

A Temporal Relational DBMS : TimeDB –

In this dissertation [8], the author showcases that, a temporal data model has:

1. Valid time and/or transaction time, also, other time lines.
2. Temporal data structures that do not make any assumptions about a specific type system or the presence of

specific time attributes.
3. Temporal data structures allows time stamping of all constructs supported by the model.
4. Temporal data structures overcome the vertical temporal anomaly.
5. A temporally complete query language or algebra with snapshot reducible semantics.
6. Temporal constraints with snapshot reducible semantics.

The bi-temporal relational DBMS, Time DB implements the language ATSQL2 which is based on the standard
query language SQL. ATSQL2 includes not only a bi-temporal query language, but also a bi-temporal
modification, data definition and constraint specification language.

It is the result of integrating three different approaches, namely
1. ATSQL2, a temporal query language based on SQL.
2. Chrono Log, introducing the concept of temporal completeness.
3. Bi-temporal ChronoSQL, featuring a bi-temporal query language

Methodology

The translation algorithm used in Time DB is the following: a temporal query is translated into a temporal
algebra expression using the temporal set operations union (∪t), intersect (∩t) and difference (\t). Each argument
to these set operations is either a simple algebra expression using a temporal select (σt), project (πt) and cross
product (×t) operation or the result of another temporal set operation. Each simple algebra expression using only
a combination of a select, project and cross product operation can then be evaluated separately using a standard
SELECT-FROM-WHERE statement. These intermediate results are stored in temporary tables and then used to
calculate other parts of the expression.

In Time DB, a valid-time interval $I = [vts_#$ - vte_#$), closed at the lower bound and open at the upper, is
mapped internally to two attributes vts_#$ (valid-time start) and vte_#$ (valid time end). Thus, each valid-time
relation will have two additional (hidden) attributes. Transaction-time tables are extended accordingly. Bi-
temporal tables contain attributes for both valid time and transaction time.

Bi-temporal Algebra Operations

Time DB handles bi-temporal queries. For these queries, special operations for set union, set difference, set
intersection and cross product need to be implemented. A bi-temporal query is translated to standard SQL the
same way as a unitemporal query. It uses bi-temporal algebra operations instead.

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.172.06

Volume 17 Issue 2 September 2020 63 ISSN: 2319-1058

I. BI-TEMPORAL SET UNION OPERATION

The bi-temporal union operation (∪vt) of two union-compatible bi-temporal relations R1 and R2, having
attributes R1 = R2 = is the same as the non-temporal union,

R1 (∪vt) R2 ≡ R1 ∪ R2

Consider the bi-temporal relation R1 contains the tuple

TRANSACTION VALID NAME DEPT
[1993-1997] [1986-1993] John Sale

And relation R2 contains the tuple

TRANSACTION VALID NAME DEPT
[1990-1995] [1984-1991] John Sale

The bi-temporal set union operation returns a bi-temporal relation containing two tuples. The query

 VALID AND TRANSACTION

(SELECT * FROM R1
UNION
SELECT * FROM R2);

returns the bi-temporal relation:

TRANSACTION VALID NAME DEPT
[1993-1997] [1986-1993] John Sale
[1990-1995] [1984-1991] John Sale

II. BI-TEMPORAL SET DIFFERENCE OPERATION

Depending on the sequence - VALID AND TRANSACTION or TRANSACTION AND VALID - used in
the bi-temporal query, the resulting timestamp is set up differently. In Time DB, the bi-temporal difference
R1 (\vt) R2 can be expressed in two different ways. The query

VALID AND TRANSACTION

(SELECT * FROM R1
EXCEPT
SELECT * FROM R2);

 returns the bi-temporal relation:

TRANSACTION VALID NAME DEPT
[1993-1995] [1991-1993] John Sale
[1995-1997] [1986-1993] John Sale

 And also the query

TRANSACTION AND VALID

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.172.06

Volume 17 Issue 2 September 2020 64 ISSN: 2319-1058

 (SELECT * FROM R1
EXCEPT
SELECT * FROM R2);

returns the bi-temporal relation:

VALID TRANSACTION NAME DEPT
[1986-1991] [1995-1997] John Sale
[1991-1993] [1993-1997] John Sale

III. BI-TEMPORAL SET INTERSECTION OPERATION

The bi-temporal set intersection of the two relations R1 and R2, R1 (∩vt) R2, can be written as

R1 (\vt) (R1 (\vt) R2)

The query in Time DB is written as

VALID AND TRANSACTION

(SELECT * FROM R1
INTERSECT
SELECT * FROM R2);

and returns the bi-temporal relation:

TRANSACTION VALID NAME DEPT
[1993-1995] [1986-1991] John Sale

IV. BI-TEMPORAL CROSS PRODUCT OPERATION

The bi-temporal cross product of R1 and R2, R1 (×vt) R2, can be translated into the following SQL
statement:

SELECT A1, A2, . . . , An, B1, B2, . . . , Bm,

GREATEST (R1. v t s_#$, R2. v t s_#$) v t s _#$,
LEAST (R1. v t e_#$, R2. v t e_ #$) v t e_#$,
GREATEST(R1. t t s_#$, R2. t t s_ #$) t t s _#$,
LEAST(R1. t t e_ #$, R2. t t e _#$) t t e_#$

FROM R1, R2
WHERE GREATEST(R1. v t s _#$, R2. v t s_ #$) < LEAST(R1. v t e_ #$, R2. v t e_ #$)
AND GREATEST(R1. t t s_ #$, R2. t t s_ #$) < LEAST(R1. t t e_ #$, R2. t t e_ #$)

 The bi-temporal cross product query can be written as

 VALID AND TRANSACTION

(SELECT * FROM R1, R2);

and returns the bi-temporal relation:

TRANSACTION VALID NAME DEPT NAME DEPT
[1993-1995] [1986-1991] John Sale John Sales

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.172.06

Volume 17 Issue 2 September 2020 65 ISSN: 2319-1058

V. BI-TEMPORAL SELECTION OPERATION

Time DB supports the predicates =, precedes, overlaps, meets and contains.

VI. BI-TEMPORAL PROJECTION OPERATION

The bi-temporal projection operation is same as its non-temporal counterpart. The only difference is
whether or not the timestamp attributes are in the projection.

B. Implementing bi-temporal properties into various NoSQL database categories

B.1 KEY-VALUE

A Key-value stores, the data is stored as Key Value pairs. The authors of this paper [2] proposes the below
mentioned methodologies.

Methodology

One of the solutions is to add two attributes in each Key-value pair, one for the valid time in the form of
validTimeStart and validTimeEnd as attributes.

ROW

 ID=1 Firstname ARAVIND

 Lastname GOPAN

 Salary 100000

 Validtimestart 25-8-2020

 Vaildtimeend 15-9-2020

 Transactiontime 1-7-2020

Here, the key is 1 and it points to the set of values (Firstname, Lastname, Salary, and Validtime). The salary is a
field of data that is affected by the time. The temporal property of the field salary, is managed by the valid time, in
each inserted Key-value pair we keeps track of transaction time and the valid time. Transaction time is part of the
key so it will be able to retrieve chain of time series information.

A clearer and more structured method leads us to the idea to divide the key into two parts to form a composite
key. This composite key constitutes a part that identifies the row, the regular key and the interval of the valid time.
In such a way, the key is suitable for extracting data accordingly that satisfies the validity of the information.

Major Key : Id Time Key

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.172.06

Volume 17 Issue 2 September 2020 66 ISSN: 2319-1058

B.2 : COLUMN ORIENTED STORES

Column oriented NoSQL databases are motivated from big table. The main idea is to have structured data that can
scale out to larger size. It has three main components the key, the column family and the super column. Row keys are
the main object in data distribution and partitioning. The authors of this paper [2] proposes the below mentioned
methodologies.

Bi-temporal Implementation

The row key property is exploited in the model for temporal data management. Values belonging to the same
column are stored separately on the same disk. Columns are grouped into super columns.
One way is to use the timestamps to manipulate valid time or transaction time, timestamps are more suitable to
illustrate transaction time. Furthermore, maintaining valid time can be done by adding additional columns to express
the valid time interval. Adding two columns is trivial and straightforward solution, the first column will represent
the valid time start and the second one is to represent valid time end.

In the example given below, we can track the salary of the employee using the validation time stored, i.e., the added
two columns.

ID=1 Name Salary vtFrom vtTo Tt
Thira 30000 1 2 1/1/2015
Thira 40000 3 5 1/6/2017
Thira 50000 5 ∞ 10/10/2019

III. CONCLUSION

The four ways in which bi-temporal databases can be implemented using temporal database applications are [8]

• Use a type date and implement all temporal semantics in the application program
• Specify an ADT for time that is the basis in temporal applications to timestamp and query the temporal data
• Extend a non-temporal data model to support time-varying data
• Generalize a non-temporal data model into a temporal model

The advantage of the first two approaches is that they do not need any changes to be made to the data model and
system used. While these approaches in some way support the data structures and functionality that supports time-
varying data, they cannot, however, exploit the advantage of the special semantics time has, for example, for
optimization.

The last two approaches can only be achieved by modifying both the data model and corresponding systems. With
respect to these approaches, if changes are done to both the data model and corresponding systems, they should be
general and orthogonal, supporting temporal data structures, temporal operations and temporal constraints without
any unnatural restrictions. In other words, the generalization approach considers all constructs and concepts of a data
model.

Salary Lastname Firstname

International Journal of Innovations in Engineering and Technology (IJIET)

http://dx.doi.org/10.21172/ijiet.172.06

Volume 17 Issue 2 September 2020 67 ISSN: 2319-1058

With respect to the second approach, the ADT was implemented using the object oriented DBMS and also the
implementation of the temporally complete language ATSQL2 which is based on extending relation schemas to
store time-varying data. The resulting bi-temporal DBMS Time DB supports a temporal query language, a temporal
data definition and modification and a temporal constraint specification language. Time DB is a front-end to the
commercial DBMS Oracle.

[2] When coming to the NoSQL database, the need for bi-temporal implementation is obvious because of the
increasing popularity of NoSQL databases and the vast number of applications that require temporal data
management. The two main categories of NoSQL databases and proposed set of solutions to describe how to
manage bi-temporal characteristics. The solution to store valid and transactions times in Key value databases, and
solutions to handle the bi-temporal properties in column oriented stores are studied. In the future work, it is possible
to embed the bi-temporal properties in document and graph databases.

IV. REFERENCES

[1] Jiao Dai SQL to NoSQL : What to do and How . IOP Conf. Series: Earth and Environmental Science 234 (2019) 012080

[2] Mohammed Eshtay, Assam Sleit, Monther Aldwairi Implementing Bi-Temporal Properties Into Various Nosql Database Categories.
International Journal of Computing, 18(1) 2019, 45-52

[3] Gerhard F. Knolmayer, Thomas Myrach Concepts of Bi-temporal Database Theory and the Evolution of Web Documents. Proceedings of
the 34th Hawaii International Conference on System Sciences - 2001

[4] Alexander Campos, Jorge Mozzino, and Alejandro Vaisman Towards Temporal Graph Databases. arXiv:1604.08568v2 [cs.DB] 2 May
2016.

[5] Morgan D. Monger, Ramon A. Mata-Toledo, Pranshu Gupta Temporal Dtata Management In NoSQL Databases.

[6] Safa Brahmia1, Zouhaier Brahmia, Fabio Grandi, and Rafik Bouaziz τJSchema: A Framework for Managing Temporal JSON- Based
NoSQL Databases. c Springer International Publishing Switzerland 2016 S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828,
pp. 167–181, 2016. DOI: 10.1007/978-3-319- 44406-213

[7] Yong Hu and Stefan Dessloch Defining Temporal Operators for Column Oriented NoSQL Databases. Y. Manolopoulos et al. (Eds.):
ADBIS 2014, LNCS 8716, pp. 39–55, 2014. Springer International Publishing Switzerland 2014

[8] ANDREAS STEINER A Generalisation Approach to Temporal Data Models and their Implementations. Diss. ETH No. 12434

