
International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 11 ISSN: 2319-1058

Clustering XML without DTD for Similarity
and Dissimilarity Calculation

Hsu-Kuang Chang
I-Shou University

No.1, Sec. 1, Syuecheng Rd.
Dashu Township, Kaohsiung,Taiwan

Abstract- XML documents on the web are often found without DTDs, particularly when these documents have been
created from legacy HTML. Yet having knowledge of the DTD can be valuable in querying and manipulating such
documents. Recent work (cf. [1]) has given us a means to (re-)construct a DTD to describe the structure common to given
set of document instances. However, given a collection of documents with unknown DTDs, it may not be appropriate to
construct a single DTD to describe every document in the collection. Instead, we would wish to partition the collection
into smaller sets of “similar” documents, and then induce a separate DTD for each such set. It is this partitioning problem
that we address in this paper. Given two XML documents, how can one measure structural (DTD) similarity between the
two? We develop a dynamic programming algorithm to find this distance for any pair of documents. We validate our
proposed distance measure experimentally. Given a collection of documents derived from multiple DTDs, we can
compute pair-wise distances between documents in the collection, and then use these distances to cluster the documents.

Keywords – DTD, XML, LED, TED

I. INTRODUCTION

The Extensible Mark-up Language (XML) is seeing increased use, and promises to fuel even more applications in
the future. In [1] the authors provide a method to automatically extract a DTD for a set of XML documents. They
provide several benefits for the existence of DTDs. An XML document can be modeled as an ordered labeled tree [2].
There is considerable previous works on finding edit distances between trees [3–6, 7–11]. Most algorithms in this
category are direct descendants of the dynamic programming techniques for finding the edit distance between strings
[12]. The basic idea in all of these tree edit distance algorithms is to find the cheapest sequence of edit operations that
can transform one tree into another. There are several other approaches that allow insertion and deletion of single
nodes anywhere within a tree [8-11]. We account for this by introducing edit operations that allow for the cutting and
pasting of whole sections of a document. Using our resulting pair-wise distance measure, we show that standard
clustering algorithms do very well at pulling together documents derived from the same DTD.

II. PREPARATION FOR SEMANTIC-BASED XML DOCUMENT
In this section, we first introduce the pre-processing steps for the incorporation of hierarchical information in
encoding the XML tree’s paths. It is based on the preorder tree representation (PTR) [13] and will be introduced
after a brief review of how to generate an XML tree from an XML document. We then describe dynamic
programming mining approach to compute the similarity between two sets of encoded paths, i.e., two XML

documents. To do so, we have to first go through the following five preprocessing steps for XML document. The
five preprocessing steps are conversion, path extraction, nested and duplicated path removal, similar element
identification and transformation, path encoding.

A. XML Document Conversion –

There are essentially two programming APIs for processing XML: SAX (Simple API for XML) and DOM
(Document Object Model). DOM treats a XML document conceptually as a tree. It provides an API that allows a
programmer to add, delete or edit nodes within the tree. The DOM is a collection of Recommendations maintained
by the W3C (World Wide Web Consortium) [14]. We use JDOM to convert the XML document to tree format.
The values of the elements in the tree are not considered here and only the structural information will be passed to
the subsequent steps. The XML’s hierarchical structure can be represented by a labeled rooted tree [14]. The XML
tree in Figure 1 can be presented by Prefix String Pattern (depthNodeNameOrder) Encoding. Finally, the XML tree in
Figure can be further use the adjacent linked-list tnode structure where dNodeO d is the node depth and o is the
visiting order in preorder traversing in the xml tree as shown in the Table 1.

International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 12 ISSN: 2319-1058

Figure 1 Simplified XML tree

Table 1 XML Tree in Adjacent List model

 tnode Child nodes
0 0a1 1b21c31d41e51f61o15
1 1b2 Nil

2 1c3 Nil

3 1d4 Nil

4 1e5 Nil

5 1f6 2g7
6 2g7 3h83k11
7 3h8 4i94j10
8 4i9 Nil

9 4j10 Nil

10 3k11 4l12
11 4l12 5m135n14
12 5m13 Nil

13 5n14 Nil

14 1o15 Nil

B. DFS_Prefix_Encoding Search XML tree –

We used depth-first search (DFS) technique intended to transform XML tree into a prefix pattern sequence. In order
to perform such a transformation, the nodes of the XML tree first have to be mapped into identifiers. Then each
identifier is associated with its depth in the tree. Finally a depth-first exploration of the tree will give the
corresponding prefix pattern. The DFS_Prefix_Encoding algorithm is shown in Table 2 and prefix pattern tree of
XML shown in Figure 1 should be as the result 0a1 1b2 1c3 1d4 1e5 1f6 2g7 3h8 4i9 4j10 3k11 4l12 5m13 5h14 1o15 where

dNodeO d is the node depth and o is the visiting order in preorder traversing. Once the whole set of prefix pattern
(corresponding to the XML documents of a collection) is obtained, the pair-wised XML document distance is able to
calculate by dynamic programming.

Table 2 DFS_Prefix_Encoding Algorithm
DFS_Prefix_Encoding Algorithm

1. for each xml tree xi=1~n in adjacent-list
2. call DFS_Prefix_Encoding(xi,v0)
3.
4. Procedure DFS_Prefix_Encoding(xi,v)
5. visited(v) 1
6. for each vertex w adjacent to v do

International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 13 ISSN: 2319-1058

7. if visited(w)=0 then
8. call DFS_Prefix_Encoding(xi,w)
9. end DFS_Prefix_Encoding

10.

III. DYNAMIC PROGRAMMING TREE EDIT DISTANCE TED

A. Tree-Edit Transformation operations
Our algorithm for calculating the tree edit distance between structural summaries of root order- label trees that
represent XML documents uses a dynamic programming algorithm. In order to transform one source tree T1 of
preorder x[1..m] to a target tree T2 of preorder y[1..n],we can perform various transformation operations. Our goal
is, given tree T1 and T2, to produce a series of transformations that change T1 to T2. Initially, i=j=1. We are required
to examine every node in T1 during the transformation, which means that at the end of the sequence of
transformation operations, we must have i =m+1.

There are five transformation operations:

● Copy (⤡)
m1 = c[i-1, j-1]+cost(copy) if x[i].label=y[j].label and x[i].depth=y[j].depth ,or
∞ otherwise.

● Replace (↖)
m2 = c[i-1, j-1]+cost(replace) if x[i].label≠y[j].label and
x[i].depth=y[j].depth ,or ∞ otherwise.

● Twiddle (～)
m3 = c[x, y -1] + ci(T2[y]); if ((x, y-1), (x, y))G (the distance of (x; y)'s top
node in G plus the cost to insert T2[y]), or ∞ otherwise.

● Delete ()

m4 = c[i-1, j] + cd(T1[x]), if ((i-1, j), (i, j)) G (the distance of (i, j)'s left
node in G plus the cost to delete T1[x]), or ∞ otherwise.

● Insert ()
m5 = c[i, j -1] + ci(T2[y]), if ((i, j-1), (i, j)) G (the distance of (i; j)'s top node

in G plus the cost to insert T2[y]), or ∞ otherwise.
 C[i , j] = min(m1,m2,m3, m4,m5), and the corresponding operation puts into the op[i,j] table.

op[i,j]=

INSERT

orDELETE

orTWIDDLE

orREPLACE

orCOPY

op[i,j]=

INSERT

orDELETE

orTWIDDLE

orREPLACE

orCOPY

B. Example of Tree Edit Distance (TED)
Given two xml-tree x[1..m] and y[1..n] and set of transformation-operation costs, the edit distance from x to y is the
cost of the least expensive operation sequence that transforms x to y. We use a dynamic-programming algorithm

International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 14 ISSN: 2319-1058

that finds the edit distance from x[1..m] to y[1..n] and prints an optimal operation sequence, also analyze the running
time and space requirements of our algorithm.

Example

The Figure 2 shows two xml trees Ti and Tj which we took feature extraction firstly, and calculates the distance
between them.

 Figure 2 XML tree Ti and Tj

We calculate the distance between Ti and Tj using TED(Ti,Tj) algorithm and the result as following Table 3 shown.

Table 3 The distance between Ti and Tj using TED(Ti,Tj)

XMLs Tj 0A1 1B2 1D3 1K4 2C5 3P6 1O7

Ti 0 1 2 3 4 5 6 7

0A1 1 1 ⤡ 2 ← 3 ← 4 ← 5 ← 6 ← 7 ←

1B2 2 2 ↑ 2 ⤡ 3 ↖ 4 ↖ 5 ← 6 ← 7 ←

1C3 3 3 ↑ 3 ↖ 3 ↖ 4 ↖ 5 ← 6 ← 7 ←

2E4 4 4 ↑ 4 ↑ 4 ↑ 5 ↑ 5 ↖ 6 ← 7 ←

1D5 5 5 ↑ 5 ↖ 5 ↖ 5 ↖ 6 ← 7 ← 7 ↖

⤡ (copy) , ↖(replace), ↑(delete), ←(insert)

Like longest common subsequence (LCS), our pseudo-code fills of the Table 3 in row-major order, i.e., row-by-row
from top to bottom, and left to right within each row. Column-major order (column-by-column from left to right,
and top to bottom within each column) would also work. Along with the c[i, j] table, we fill in the table op[i, j],
holding which operation was used. To reconstruct this sequence, we use the op table returned by Tree-Edit-
Distance. TED Operation-Print, the procedure OP-PRINT (op, i, j) reconstructs the optimal operation sequence that
we found to transform Xi into Yj . The base case is when i = j = 0. The first call is OP-PRINT(op,m, n).

Finally, we got the following operations which transform Ti xml tree into Tj xml tree.

Replace(Ti[1], A) /* or Copy (Ti[1],A) */
Insert(Tj[2],Ti[1],1)
Replace(Ti[2],D)
Replace(Ti[3],K)

International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 15 ISSN: 2319-1058

Replace(Ti[4],C)
Insert(Tj[6],Ti[4],1)
Replace(Ti[5],O)

Also, those of the differences of two xml trees are calculated as the following:

)cos(7)cos(5

)cos(7

tinserttdelete

tupdate

 = 0.58 dissimilarity

IV. EXPERIMENTAL EVALUATION

The goal of our work is to find documents with structural similarity, that is, documents generated from a common
DTD. We apply a standard clustering algorithm based on the distance measures computed for a given collection of
documents with known DTDs. For any choice of distance metric, we can evaluate how closely the reported clusters
correspond to the actual DTDs. The experiments were conducted as follows. The following five DTDs were
downloaded from ACM’s SIGMOD Record homepage[15]: OrdinaryIssuePage.dtd, ProceedingsPage.dtd,
SigmodRecord.dtd , Index.dtd and IndexTerm.dtd We also downloaded the XML document generator from IBM’s
homepage[16]. This generator accepts the above DTDs as input and creates the sets of XML documents for
simulations. Based upon five sets of XML documents with similar characteristics, their tree-edit-distance were
computed, analyzed and reported as follows. We use the formula to compare pair-wise xml trees similarity

),(),(1),(jijiji TTUnmatchedMatchedTTTEDTTSim , and

N

t

N

p pt

ptpt

t
ji

t

M

cm

NN
TTUnmatchedMatched

1 1 ,

,,1

1

1
),(

, where the Matched-Unmatched is difference sum of xml tree Ti and Tj in the common matched and common
unmatched elements, and

N is total number of level-1 subtree,
 Nt is total number of the paths in the tth subtree,
 Mt,p is number of elements in the (t,p)th path,
 mt,p is number of common elements (maximal sequential pattern),
 ct,p is sum of the common unmatched element in the (t,p)th path.

So the difference between Ti and Tj in the Table 4 can be as followed:

)cos(7)cos(5

)cos(7

tinserttdelete

tupdate

 = 0.58 dissimilarity (~ 0.42 similarity)

, and the

N

t

N

p pt

ptpt

t
ji

t

M

cm

NN
TTUnmatchedMatched

1 1 ,

,,1

1

1
),(

=
30

1

4

2

3

1
1

5

1

4

31
*

1

1

3

21
*

1

1

2

2
*

1

1

5

1

 ,

4533.0
30

1
58.01),(),(1),(jijiji TTUnmatchedMatchedTTTEDTTSim

A. Similarity documents of same DTDs
We show the similarity between the first document OrdinaryIssuePage as the base document, the 2nd , 3rd , 4th , 5th ,
and 6th as the query document. Figure 3 shows the similarity between the first document OrdinaryIssuePage as the
base document and the query document 2,3,4,5 and 6.

International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 16 ISSN: 2319-1058

The Sim ilarity of X M L from O rdinaryIssuePage using base docum ent 1

0.94

0.96

0.98

1

1.02

1,2 1,3 1,4 1,5 1,6

D ocum entSet(O rdinaryIssuePage,O rdinaryIssuePage)

S
im
il
ar
it
y
 (
R
at
io
)

B ase docum ent 1

 Figure 3. Similarity base-document 1 with query documents 2-6

 We also compare our proposed method with Lee et al.’s method and PTR+ES method as shown on the Figure 4. It

can be seen that the similarity values obtained by the proposed methods, i.e., TED, are pretty similar to those of
Lee et al.’s and PTR+ES method. On the Figure 4 shows the ratio similarity of the DocumentSet(base,x)=(1,2)
which uses the 1st ordinaryIssuePage as base and the 2nd OrdinaryIssuePage as query document,
DocumentSet(base,x)=(1,5), DocumentSet(base,x)=(2,5), and DocumentSet(base,query)=(3,4), are better than the
Lee et al.’s and PTR+ES method’s similarity ratio.

The Sim ilarity of X M Ls form O rdinaryIssuePage.dtd

0.94

0.96

0.98

1

1.02

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

D ocum ent(O rdinaryIssuePage,O rdinaryIssuePage)

Si
m
il
ar
it
y
 (
R
at
io
)

Proposed m ethod

Lee et al's m ethod

PTR m ethod

 Figure 4. Comparing Similarity with different methods

B. Similarity documents of different DTDs
 In this experiment, the similarities between documents of different DTDs were analyzed. Figures 5~6 show the
results of heterogeneous XML document similarity. The XML documents from OrdinaryIssuePage.dtd were
adopted as the base documents while those from ProceedingsPage.dtd , SigmodRecord.dtd and index.dtd were used
as query documents. The experimental results are shown in Figure 5 where DocumentSet(base,x,y,z) is used to
denote the similarities between document base from OrdinaryIssuePage.dtd (the 3rd document) and document x from
ProceedingsPage(the 1st document ~ the 4th document) and between document base and document y form
SigmodRecord.dtd and between document base and document z form index.dtd. As the XML documents come from
different DTDs, this is called heterogeneous XML document similarity.

International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 17 ISSN: 2319-1058

The Sim ilarity Com parison of X M Ls From different D TD s U sing Proposed M ethod

0

0.1

0.2

0.3

0.4

3,1,1,1 3,2,1,1 3,3,1,1 3,4,1,1

D ocSet(O rdinaryIssuePage,ProceedingsPage,Sigm odRecord,Index)

S
im
ila
ri
ty
 (
R
at
io
)

O rdinary-Proceeding

O rdinary-Sigm od

O rdinary-Index

 Figure 5. DocumentSet (the 3rd Ordinary as base, Proceeding, Sigmod, Index)

Figure 6 shows that DocumentSet(base,x,y,z) is used to denote the similarities between the 2nd document as base
from OrdinaryIssuePage.dtd (the 2nd document) and document x from ProceedingsPage (the 1st document ~ the 4th
document) and between document base and document y form SigmodRecord.dtd and between document base and
document z form index.dtd.

The Sim ilarity Com parison of X M Ls from D ifferent D TD s U sing Proposed M ethod

0

0.05

0.1

0.15

0.2

0.25

2,1,1,1 2,2,1,1 2,3,1,1 2,4,1,1

D ocSet(O rdinaryIssuePage,ProceedingsPage,Sigm odRecord,Index)

S
im

ila
ri
ty
 (
R
at
io
)

O rdinary-Proceeding

O rdinary-Sigm od

O rdinary-Index

Figure 6. DocumentSet (the 2nd Ordinary as base, Proceeding, Sigmod, Index)

V. CONCLUSION

For efficiently serving versatile queries, a new XML data representation referred to as Prefix String-Pattern
Encoding (PSPE) has been presented in this paper. PSPE reserves level and path depth of XML paths, the semantic
information enables the inference of deriving XML path relationship. By using the algorithm TED is to find
documents with structural similarity, that is, documents generated from a common DTD. We prepare for clustering
based on the distance measures computed for a given collection of documents with known DTDs, and give a
satisfied experiment result.

REFERENCES

[1] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim, Xtract: A system for extracting document type descriptors from XML

documents. In Proc. of ACM SIGMOD, pages 165–176, 2000.
[2] World Wide Web Consortium. The document object model http://www.w3.org/DOM/.
[3] S. Chawathe, Comparing hierarchical data in extended memory. In Proc. of VLDB,pages 90–101, 1999.
[4] S. Chawathe , H. Garcia-Molina, Meaningful change detection in structured data. In Proc. of ACM SIGMOD, pages 26–37, 1997.
[5] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, Change detection in hierarchically structured information. In Proc. of ACM

SIGMOD, pages 493–504, 1996.
[6] Gregory Cobena, Serge Abiteboul, and Amelie Marian, Detecting changes in XML documents, In Proc. of ICDE, 2002.
[7] S. Selkow, The tree-to-tree editing problem. Information Processing Letters, 6(6):184–186, December 1977.
[8] D. Shasha and K. Zhang, Approximate tree pattern matching, In Pattern Matching in Strings, Trees and Arrays, chapter 14, Oxford University
Press, 1995.
[9] K. C. Tai, The tree-to-tree correction problem. Journal of the ACM, 26:422–433, 1979.
[10] J. Wang, K. Zhang, K. Jeong, and D. Shasha, A system for approximate tree matching, IEEE TKDE, 6(4):559–571, 1994.
[11] K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal of Computing,
18(6):1245–1262, December 1989.

International Journal of Innovations in Engineering and Technology (IJIET)
http://dx.doi.org/10.21172/ijiet.223.02

Volume 22 Issue 3 June 2022 18 ISSN: 2319-1058

[12] V. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl., 6:707–710, 1966.
[13] Sedgewick R (1996) Chapter 5 trees, an introduction to the analysis of algorithms. Addison-Wesley, pp 221–298.
[14] World Wide Web Consortium. The document object model. http://www.w3.org/DOM/.
[15] ACM SIGMOD Record home page [http://www.acm.org/sigmod/record/xml]
[16] IBM’s XML Generator homepage [http://www.alphaworks.ibm.com]

