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Abstract-   This study introduces a novel approach for human activity recognition (HAR), crucial across various domains 
like human-computer interaction, robotics, surveillance systems, and more. It focuses on integrating both temporal and 
spatial features for effective representation. To achieve this, Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) Networks are utilized to extract spatial and temporal features from video datasets. A deep 
learning model incorporating both CNN and LSTM was developed and trained on the UCF50-Action Recognition 
dataset. The experimental results demonstrate the effectiveness and superiority of this approach compared to existing 
methods on the UCF-50 dataset, achieving an accuracy of 94.14%. 
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I. INTRODUCTION 

HAR stands as a prominent and captivating area of research within computer vision and deep learning (DL). It 
serves as a foundational technology with diverse applications spanning intelligent monitoring, human-computer 
interaction, robotics, digital entertainment, and healthcare. Despite its significance, accurately recognizing human 
activities poses considerable challenges due to factors like varying lighting conditions, complex backgrounds, and 
diverse perspectives. Existing approaches often struggle to achieve high accuracy, primarily due to the extensive 
range of activities and the highly unconstrained nature of the video datasets.  
 
The review of HAR literature can be categorized into two main streams: traditional, feature-based techniques and 
DL-based techniques. Traditional methods typically involve a sequence of steps, including preprocessing to remove 
noise and outliers, extracting low-level features from the preprocessed data, and classification to map these features 
to specific activity classes. However, this review paper specifically focuses on DL-based approaches, as the 
presented model relies on deep features. Nonetheless, readers interested in exploring further can refer to 
comprehensive assessments of baseline HAR methods[8]. 
 
In this study, DL serves as the foundation for Activity Recognition. Various image classification models, such as 
AlexNet [1], GoogleNet [2], and VGGNet [3], have emerged from the ImageNet Large Visual Recognition 
Challenge (ILSVRC). These models, primarily based on CNNs, have proven effective not only in classifying images 
but also in excelling at diverse tasks like object detection [4], scene labeling [5], and activity recognition [6]. 
 
Activity recognition can utilize data from various sources such as accelerometers, sensors, images, or video frames. 
Collecting data from sensors often requires individuals to wear multiple sensors at different body locations. The 
collected data undergoes various processing steps, including segmentation and feature extraction, which can be 
particularly challenging for sensor data. 
 
The success of neural networks heavily relies on the quality of the dataset used for training. Datasets designed to 
train neural networks for activity classification play a crucial role in the performance of these networks. To develop 
an architecture that yields accurate results, it is essential to have an appropriate dataset tailored to the specific 
problem. One such dataset is UCF50 [7], which was created at the University of Central Florida by expanding the 
UCF11 Action dataset to include activities like basketball and other sports. 
 
This paper proposes a fusion network, utilizing CNN and LSTM, to extract spatial and temporal information from 
real-life action recognition datasets like UCF50. The standard computer vision pipeline consists of two main steps: 
activity feature representation and activity recognition. Activity feature representation involves extracting essential 
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details from the video as features, a critical step in the recognition process as the quality of the features directly 
impacts the recognition outcome. The feature vector obtained in this stage serves as input for the activity recognition 
phase, where an algorithm learns parameters and classifies activities based on the learned features. 
 
An analysis of the UCF-50 dataset was conducted, yielding impressive results. The significant contributions of this 
paper are as follows: 
 

1. Unlike current HAR approaches, this paper proposes a unique mechanism that uses a CNN approach to 
capture action videos, followed by a sequential learning method, achieving new state-of-the-art accuracy. 

2. CNN is employed to detect spatial features, while LSTM is used to identify temporal correlations among 
these features, enhancing the accuracy of HAR. Effective HAR relies heavily on both spatial and temporal 
features. 

3. The proposed framework's effectiveness is evaluated on the challenging UCF-50 dataset, achieving an 
experimental state-of-the-art accuracy of 94.14%. 

 

The subsequent sections of the work are structured as follows: Section II covers the Literature Review. Sections 
III and IV detail the Proposed Methodology and Experimental Results, respectively. Section V offers the 
conclusion at the end. 

II. LITERATURE RIVIEW 

In paper [9], the authors designed a deep neural network architecture capable of recognizing human activities in 
videos by utilizing action bank features from the UCF50 database. Meanwhile, the authors of paper [10] developed 
3D CNN models for activity recognition. These models perform 3D convolutions, generating features that account 
for both spatial and temporal dimensions. To achieve this, a deep architecture is required to produce multiple 
channels of information from the surrounding input frames, allowing convolution and subsampling to be performed 
separately in each channel. The data from all channels is then combined to create the final feature representation. 
 

In paper [11], the authors focused on behavior recognition by classifying behaviors based on spatiotemporal 
parameters. They introduced a new spatiotemporal interest point and analyzed various cuboid descriptors. These 
cuboid prototypes were used to develop a more effective and reliable behavior descriptor. 
 

In paper [12], the authors proposed a model to evaluate the performance of CNNs in video classification. They 
found that the slow fusion model outperforms early and late fusion models, as its performance is not solely 
dependent on architectural characteristics. Given the dynamic nature of videos, which require complex processing 
due to their temporal extent, the model simplifies classification by treating each video as a collection of fixed-size 
clips. This approach allows the spatio-temporal features to be effectively understood by extending network 
connectivity in the time dimension. The study focuses on three primary connectivity classifications: Early Fusion, 
Late Fusion, and Slow Fusion. The model was tested using the UCF-101 and Sports1M datasets. 
 

In paper [13], the authors proposed two video classification mechanisms that integrate frame-level CNN outputs 
into video-level predictions, allowing entire videos to be processed in one go. This video classification model 
effectively employs temporal feature pooling, representing a bag-of-words. Motion attribute-based images are 
computed at each time frame, quantized, and then pooled across time. Various pooling techniques are examined, 
with features from specific layers aggregated accordingly. However, a high number of gradients can cause fully 
connected layer pooling and average pooling to fail. The model utilizes datasets like Sports-1M and UCF-101 in 
conjunction with LSTM networks for video classification. 
 

In paper [14], the authors introduced the LRCN model, which is a class of models that are deep both spatially and 
temporally. These models are flexible and can be applied to a wide range of vision tasks requiring sequential inputs 
and outputs. The evaluation of the LRCN model was conducted using the UCF101 dataset, which involves the 
classification and categorization of videos into various human action classes. 
 

In paper [15], the authors proposed a method that involves the study of recurrent neural networks (RNNs), where 
links between nodes form a directed graph, making them suitable for time series applications. This approach trains a 
model to capture temporal dynamic behavior, incorporating a memory segment to handle input sequences of varying 
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lengths. DL networks are used to transform and extract basic features from the input data. These features are further 
optimized and reduced using a sparse autoencoder (SAE) network. However, a drawback of SAE is that its sensing 
capability depends on input quality. To address this, LSTM-based RNNs are employed. At the end of the process, 
features can also be extracted using models built on the LSTM-RNN architecture. The Softmax Regression 
Algorithm is used as the classifier, with the trained network's coefficients serving as tools for further training. 
 

In paper [16], the authors proposed a comprehensive DL-based architecture for activity recognition, specifically 
using a CNN-LSTM network. This architecture enables more accurate prediction of human activities from raw data 
while simplifying the model and eliminating the need for complex feature engineering. The CNN-LSTM network is 
deep both spatially and temporally. The model achieves 92% accuracy on the public UCI HAR dataset. It performs 
well compared to previously proposed deep neural network (DNN) architectures and machine learning (ML) models 
that rely on manually generated feature datasets. 
 

A CNN-LSTM model for two classes was developed by the authors of study [17]. They used their own dataset to 
validate the model, and they evaluated its performance in terms of error and classification accuracy against that of 
existing DL and ML models, such as SVM and LSTM. 
 

The reviewed papers explore different DL techniques for human activity and behavior recognition. Approaches 
include deep neural networks using action bank features, 3D CNN models for spatial and temporal dimensions, and 
new spatiotemporal interest points for behavior recognition. Some models use slow fusion to handle video 
classification, while others integrate frame-level CNN outputs to generate video-level predictions with temporal 
feature pooling. The LRCN model addresses sequential vision tasks, and RNNs with LSTM are used for time series 
applications. CNN-LSTM architectures are highlighted for their high accuracy and simplified feature engineering, 
outperforming traditional models. 
 

III METHODOLOGY 
A. Dataset Description – 

The UCF50 dataset, created by the University of Central Florida and released in 2011, is a widely-utilized video 
collection for human action recognition tasks. It comprises 6,618 videos across 50 diverse action categories, sourced 
primarily from YouTube, with most videos lasting from a few seconds to a couple of minutes and typically filmed at 
25 frames per second. The action categories span a broad range, including sports, daily activities, interactions, 
exercise, and miscellaneous actions like applying makeup and yo-yoing. Videos feature significant intra-class 
variation, complex backgrounds, and camera movements, posing substantial challenges for recognition algorithms. 
With resolutions around 320x240 pixels and each video annotated with a single action label, UCF50 serves as a 
critical benchmark for developing and testing ML models in the action recognition domain. Researchers extensively 
use it to explore temporal and spatial features in video data and to evaluate the robustness of their models in real-
world conditions. The dataset can be accessed and downloaded from the UCF50 homepage and other academic 
repositories. Figure 1 shown few sample images frames from the dataset. 
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Figure 1. Sample image frames from the dataset UCF50 

B. Proposed Methodology 

This paper proposes a hybrid approach for HAR utilizing both CNN and LSTM to capture spatial and temporal 
features from video data. Initially, video frames are loaded and preprocessed to ensure consistency in size and 
normalization of pixel values. A custom CNN model is developed from scratch to extract spatial features from these 
frames. This CNN model is then applied to each frame in the sequence using the TimeDistributed layer, allowing the 
extraction of features for each time step. To capture the temporal dependencies between frames, an LSTM layer is 
incorporated, followed by fully connected layers and a dropout layer to reduce overfitting. The model ends with a 
softmax activation function for classification. 

 
The CNN extracts spatial features while the LSTM captures the temporal dynamics, enabling the model to 

effectively recognize activities from video data [19]. This combined CNN-LSTM model is trained on the UCF50 
dataset, which provides a diverse range of action videos. The proposed methodology leverages the strengths of both 
CNN and LSTM, resulting in a robust and accurate HAR model that significantly improves performance on the 
UCF50 dataset. The experimental results demonstrate the model's capability to achieve new state-of-the-art 
accuracy, validating the effectiveness of the proposed approach.  
 
 

Algorithm1 HAR Model 

 
Step 1: Import necessary libraries 
    - Import libraries for data manipulation (e.g., numpy, os) 
    - Import libraries for video processing (e.g., cv2) 
    - Import TensorFlow/Keras libraries for building models (e.g., Sequential, Conv2D, LSTM, Dense, 
TimeDistributed, Adam) 
 
Step 2: Load and preprocess video frames 
    - Define a function to load video frames from a given path 
    - Resize frames to a consistent height and width 
    - Normalize pixel values 
    - Ensure each video has a consistent number of frames by repeating the last frame if necessary 
 
Step 3: Generate batches of data 
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    - Define a data generator function 
    - Randomly select action classes and videos for each batch 
    - Use the video loading function to preprocess the selected videos 
    - Create batches of video data and corresponding one-hot encoded labels 
    - Yield batches for training the model 
 
Step 4: Define the custom CNN model 
    - Initialize a sequential model 
    - Add convolutional layers with activation functions and pooling layers 
    - Flatten the output to prepare it for the LSTM layer 
 
Step 5: Define the combined CNN-LSTM model 
    - Initialize a sequential model 
    - Use TimeDistributed to apply the CNN model to each frame in the sequence 
    - Add an LSTM layer to capture temporal dependencies 
    - Add fully connected layers and a dropout layer to reduce overfitting 
    - Add an output layer with a softmax activation function for classification 
    - Compile the model with a suitable loss function and optimizer 
 
Step 6: Train the model 
    - Initialize the data generator for training data 
    - Define the number of epochs and steps per epoch for training 
    - Use the fit method to train the CNN-LSTM model with the data generator 

 
Algorithm 1 outlines the step-by-step procedure for constructing our model. Initially, necessary libraries for 

data manipulation, video processing, and model building are imported. Video frames are then loaded and 
preprocessed to ensure a consistent size and normalization of pixel values. A custom CNN model is developed from 
scratch to extract spatial features from these frames. This CNN model is applied to each frame in the sequence using 
a TimeDistributed layer, allowing feature extraction at each time step. To capture the temporal dependencies 
between frames, an LSTM layer is incorporated, followed by fully connected layers and a dropout layer to mitigate 
overfitting. The model concludes with a softmax activation function for classification. 
 

The process begins with importing the necessary libraries and loading the video frames. The frames are resized 
and normalized, ensuring a uniform input for the model. A custom CNN is constructed to extract spatial features, 
which is then applied sequentially across all frames using TimeDistributed. An LSTM layer captures temporal 
relationships, and fully connected layers with dropout are added to enhance the model’s robustness. Finally, the 
model is compiled and trained on the UCF50 dataset, demonstrating significant improvements in HAR accuracy. 

III. EXPERIMENTAL RESULTS 

We have split the UCF50 dataset into an 80-20 ratio for training and testing. First, we ensured the dataset was 
organized with video files in separate folders for each activity class. We then created a list of all video file paths and 
their corresponding labels. Using the train_test_split function from the sklearn.model_selection module, we 
performed the split by specifying test_size=0.2 to allocate 20% of the data for testing and 80% for training. 
Additionally, we used the stratify parameter to ensure the split maintained the same proportion of each class in both 
sets, which is crucial for maintaining class balance in the training and testing subsets. 
 

For training the model on the UCF50 dataset, several hyperparameters are set to control the learning process. 
These include the batch size, which decides how many samples are processed during each training cycle, typically 
set to 32. The learning rate governs the step size during optimization, often initialized at 0.001 for Adam optimizer. 
The number of epochs, typically set to 150, indicates how many times the entire dataset is passed through the model 
during training. Architectural hyperparameters such as the number of filters in convolutional layers (32), kernel size 
(3x3), and pool size (2x2) regulate the CNN's feature extraction capabilities. Additionally, the number of LSTM 
units (64) and dropout rate (0.5) control the complexity and regularization of the LSTM layer. These 
hyperparameters are crucial for fine-tuning the model's performance and generalization ability. 
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Figure 2. Model Accuracy and Model Loss 

 
Figure 2 displays two graphs showing model accuracy and loss, both reflecting a consistent trend. As the 

number of epochs grows, the model's accuracy improves, while its loss decreases, indicating effective learning and 
performance enhancement on the training data. The model is trained over 150 epochs, achieving its highest 
validation accuracy of 94.14% at the 115th epoch. Towards the end of training, a slight gap between training and 
validation accuracy emerges, suggesting minor overfitting. This implies that the model might be overly customized 
to the training data, potentially affecting its generalization to new, unseen data. 
 
 

Table 1. Performance comparison will all previous models 
 

Network Model Accuracy(%) Precision Recall F1 
score 

Lagrangian particle trajectories[21] 80.97 0.83 0.80 0.81 
Relative motion descriptor (RMD) + Modes[22] 82.03 0.82 0.79 0.80 

Dense cuboids + HOG + HOF + MBH +BoF[23] 80.29 0.82 0.77 0.79 
Dense trajectory + HOG +HOF + MBH + 
BoF[23] 

84.57 0.86 0.84 0.84 

CNNs+LDS[20] 82.76 0.83 0.81 0.81 
CNN + LSTM (Proposed Method) 94.14 0.95 0.94 0.94 

 
 

The proposed CNN + LSTM model stands out as the most effective approach among all previous models [20, 
21, 22, 23] for HAR, shown in Table 1. While prior models achieved respectable performance, ranging from 80.20% 
to 84.50% validation accuracy, and F1 scores between 0.79 to 0.84, the CNN + LSTM model significantly surpassed 
them, achieving a remarkable validation accuracy of 94.14% and an F1 score of 0.94. Moreover, its precision and 
recall scores of 0.95 and 0.94, respectively, demonstrate its exceptional ability to accurately classify activities while 
minimizing both false positives and false negatives. This indicates that the proposed model not only achieves higher 
accuracy but also maintains a superior balance between precision and recall, making it a standout choice for HAR 
tasks. 

The analysis revealed that activities such as PlayingGuitar, Fencing, MilitaryParade, and Drumming exhibited 
higher accuracy, possibly due to distinct characteristics that set them apart from other categories. However, the model 
exhibited lower performance for activities like GolfSwing, JavelinThrow, HighJump, and Nun Chucks, suggesting 
that the proposed technique may struggle when confronted with unclear backgrounds and high-speed movements. 

 

IV.CONCLUSION 

This study introduces a novel DL approach tailored for HAR on real-world datasets. By leveraging the capabilities 
of both CNN and LSTM architectures, our method effectively extracts both temporal and spatial features from the 
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data. Our experiments conducted on the UCF-50 dataset demonstrate higher quality output in comparison to most 
existing descriptors, achieving an accuracy of 94.14%, along with precision, recall, and F1 score of 0.95, 0.94, and 
0.94, respectively. 
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